Control of criticality and computation in spiking neuromorphic networks with plasticity
Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticit...
Guardado en:
Autores principales: | Benjamin Cramer, David Stöckel, Markus Kreft, Michael Wibral, Johannes Schemmel, Karlheinz Meier, Viola Priesemann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb7c0a50753d437fb6161c1380bc2dcd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.
por: Mostafa Rahimi Azghadi, et al.
Publicado: (2014) -
Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors
por: Julian Büchel, et al.
Publicado: (2021) -
A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware
por: Chenglong Zou, et al.
Publicado: (2021) -
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018) -
Neuromorphic atomic switch networks.
por: Audrius V Avizienis, et al.
Publicado: (2012)