qc3C: Reference-free quality control for Hi-C sequencing data.
Hi-C is a sample preparation method that enables high-throughput sequencing to capture genome-wide spatial interactions between DNA molecules. The technique has been successfully applied to solve challenging problems such as 3D structural analysis of chromatin, scaffolding of large genome assemblies...
Enregistré dans:
Auteurs principaux: | Matthew Z DeMaere, Aaron E Darling |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fb8f07d6b62e4a17be3222af8fc8d2ca |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
miQC: An adaptive probabilistic framework for quality control of single-cell RNA-sequencing data.
par: Ariel A Hippen, et autres
Publié: (2021) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
par: Yan Zhang, et autres
Publié: (2018) -
VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data
par: Max Highsmith, et autres
Publié: (2021) -
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
par: Merve Sahin, et autres
Publié: (2021) -
Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes
par: Ahmed Abbas, et autres
Publié: (2019)