Generating high quality libraries for DIA MS with empirically corrected peptide predictions

Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specif...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Brian C. Searle, Kristian E. Swearingen, Christopher A. Barnes, Tobias Schmidt, Siegfried Gessulat, Bernhard Küster, Mathias Wilhelm
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/fb9023947e6a4fa1a16ec3f069b1e441
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specific libraries.