Generating high quality libraries for DIA MS with empirically corrected peptide predictions
Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specif...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb9023947e6a4fa1a16ec3f069b1e441 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fb9023947e6a4fa1a16ec3f069b1e441 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fb9023947e6a4fa1a16ec3f069b1e4412021-12-02T16:49:14ZGenerating high quality libraries for DIA MS with empirically corrected peptide predictions10.1038/s41467-020-15346-12041-1723https://doaj.org/article/fb9023947e6a4fa1a16ec3f069b1e4412020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15346-1https://doaj.org/toc/2041-1723Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specific libraries.Brian C. SearleKristian E. SwearingenChristopher A. BarnesTobias SchmidtSiegfried GessulatBernhard KüsterMathias WilhelmNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Brian C. Searle Kristian E. Swearingen Christopher A. Barnes Tobias Schmidt Siegfried Gessulat Bernhard Küster Mathias Wilhelm Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
description |
Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specific libraries. |
format |
article |
author |
Brian C. Searle Kristian E. Swearingen Christopher A. Barnes Tobias Schmidt Siegfried Gessulat Bernhard Küster Mathias Wilhelm |
author_facet |
Brian C. Searle Kristian E. Swearingen Christopher A. Barnes Tobias Schmidt Siegfried Gessulat Bernhard Küster Mathias Wilhelm |
author_sort |
Brian C. Searle |
title |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_short |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_full |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_fullStr |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_full_unstemmed |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_sort |
generating high quality libraries for dia ms with empirically corrected peptide predictions |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/fb9023947e6a4fa1a16ec3f069b1e441 |
work_keys_str_mv |
AT briancsearle generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT kristianeswearingen generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT christopherabarnes generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT tobiasschmidt generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT siegfriedgessulat generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT bernhardkuster generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT mathiaswilhelm generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions |
_version_ |
1718383432313077760 |