Generating high quality libraries for DIA MS with empirically corrected peptide predictions

Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specif...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Brian C. Searle, Kristian E. Swearingen, Christopher A. Barnes, Tobias Schmidt, Siegfried Gessulat, Bernhard Küster, Mathias Wilhelm
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/fb9023947e6a4fa1a16ec3f069b1e441
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fb9023947e6a4fa1a16ec3f069b1e441
record_format dspace
spelling oai:doaj.org-article:fb9023947e6a4fa1a16ec3f069b1e4412021-12-02T16:49:14ZGenerating high quality libraries for DIA MS with empirically corrected peptide predictions10.1038/s41467-020-15346-12041-1723https://doaj.org/article/fb9023947e6a4fa1a16ec3f069b1e4412020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15346-1https://doaj.org/toc/2041-1723Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specific libraries.Brian C. SearleKristian E. SwearingenChristopher A. BarnesTobias SchmidtSiegfried GessulatBernhard KüsterMathias WilhelmNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Brian C. Searle
Kristian E. Swearingen
Christopher A. Barnes
Tobias Schmidt
Siegfried Gessulat
Bernhard Küster
Mathias Wilhelm
Generating high quality libraries for DIA MS with empirically corrected peptide predictions
description Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specific libraries.
format article
author Brian C. Searle
Kristian E. Swearingen
Christopher A. Barnes
Tobias Schmidt
Siegfried Gessulat
Bernhard Küster
Mathias Wilhelm
author_facet Brian C. Searle
Kristian E. Swearingen
Christopher A. Barnes
Tobias Schmidt
Siegfried Gessulat
Bernhard Küster
Mathias Wilhelm
author_sort Brian C. Searle
title Generating high quality libraries for DIA MS with empirically corrected peptide predictions
title_short Generating high quality libraries for DIA MS with empirically corrected peptide predictions
title_full Generating high quality libraries for DIA MS with empirically corrected peptide predictions
title_fullStr Generating high quality libraries for DIA MS with empirically corrected peptide predictions
title_full_unstemmed Generating high quality libraries for DIA MS with empirically corrected peptide predictions
title_sort generating high quality libraries for dia ms with empirically corrected peptide predictions
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/fb9023947e6a4fa1a16ec3f069b1e441
work_keys_str_mv AT briancsearle generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions
AT kristianeswearingen generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions
AT christopherabarnes generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions
AT tobiasschmidt generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions
AT siegfriedgessulat generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions
AT bernhardkuster generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions
AT mathiaswilhelm generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions
_version_ 1718383432313077760