Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments
Abstract Amur ide (Leuciscus waleckii), a Cyprinid species, is broadly distributed in Northeast Asia. Different from its freshwater counterparts, the population in Lake Dali Nor has a strong alkalinity tolerance and can adapt to extremely alkali–saline water with bicarbonate over 50 mmol/L. To uncov...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb93327e123f4a2f9fb49ce9b4637271 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fb93327e123f4a2f9fb49ce9b4637271 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fb93327e123f4a2f9fb49ce9b46372712021-12-02T13:20:20ZResequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments10.1038/s41598-021-84652-52045-2322https://doaj.org/article/fb93327e123f4a2f9fb49ce9b46372712021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84652-5https://doaj.org/toc/2045-2322Abstract Amur ide (Leuciscus waleckii), a Cyprinid species, is broadly distributed in Northeast Asia. Different from its freshwater counterparts, the population in Lake Dali Nor has a strong alkalinity tolerance and can adapt to extremely alkali–saline water with bicarbonate over 50 mmol/L. To uncover the genetic basis of its alkaline adaptation, three populations, including one alkali form from Lake Dali Nor (DL), one freshwater form from its adjacent sister Lake Ganggeng Nor (GG), and one freshwater form from its historical origin, namely, the Songhua River (SH), were analyzed using genome resequencing technology. A total of 679.82 Gb clean data and 38,091,163 high-quality single-nucleotide polymorphism (SNP) loci were detected in the three populations. Nucleotide diversity and population structure analysis revealed that the DL and GG populations have lower nucleotide diversities and different genetic structures than those of the SH population. Selective sweeping showed 21 genes involved in osmoregulatory regulation (DLG1, VIPR1, AKT1, and GNAI1), inflammation and immune responses (DLG1, BRINP1, CTSL, TRAF6, AKT1, STAT3, GNAI1, SEC22b, and PSME4b), and cardiorespiratory development (TRAF6, PSME4b, STAT3, AKT1, and COL9A1) to be associated with alkaline adaption of the DL population. Interestingly, selective pressure (CodeML, MEME, and FEL) methods identified two functional codon sites of VIPR1 to be under positive selection in the DL population. The subsequent 3D protein modeling confirmed that these selected sites will incur changes in protein structure and function in the DL population. In brief, this study provides molecular evidence of population divergence and alkaline adaptation, which will be very useful for revealing the genetic basis of alkaline adaptation in Amur ide.Shuangyi WangYouyi KuangLiqun LiangBo SunXuefei ZhaoLimin ZhangYumei ChangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Shuangyi Wang Youyi Kuang Liqun Liang Bo Sun Xuefei Zhao Limin Zhang Yumei Chang Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments |
description |
Abstract Amur ide (Leuciscus waleckii), a Cyprinid species, is broadly distributed in Northeast Asia. Different from its freshwater counterparts, the population in Lake Dali Nor has a strong alkalinity tolerance and can adapt to extremely alkali–saline water with bicarbonate over 50 mmol/L. To uncover the genetic basis of its alkaline adaptation, three populations, including one alkali form from Lake Dali Nor (DL), one freshwater form from its adjacent sister Lake Ganggeng Nor (GG), and one freshwater form from its historical origin, namely, the Songhua River (SH), were analyzed using genome resequencing technology. A total of 679.82 Gb clean data and 38,091,163 high-quality single-nucleotide polymorphism (SNP) loci were detected in the three populations. Nucleotide diversity and population structure analysis revealed that the DL and GG populations have lower nucleotide diversities and different genetic structures than those of the SH population. Selective sweeping showed 21 genes involved in osmoregulatory regulation (DLG1, VIPR1, AKT1, and GNAI1), inflammation and immune responses (DLG1, BRINP1, CTSL, TRAF6, AKT1, STAT3, GNAI1, SEC22b, and PSME4b), and cardiorespiratory development (TRAF6, PSME4b, STAT3, AKT1, and COL9A1) to be associated with alkaline adaption of the DL population. Interestingly, selective pressure (CodeML, MEME, and FEL) methods identified two functional codon sites of VIPR1 to be under positive selection in the DL population. The subsequent 3D protein modeling confirmed that these selected sites will incur changes in protein structure and function in the DL population. In brief, this study provides molecular evidence of population divergence and alkaline adaptation, which will be very useful for revealing the genetic basis of alkaline adaptation in Amur ide. |
format |
article |
author |
Shuangyi Wang Youyi Kuang Liqun Liang Bo Sun Xuefei Zhao Limin Zhang Yumei Chang |
author_facet |
Shuangyi Wang Youyi Kuang Liqun Liang Bo Sun Xuefei Zhao Limin Zhang Yumei Chang |
author_sort |
Shuangyi Wang |
title |
Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments |
title_short |
Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments |
title_full |
Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments |
title_fullStr |
Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments |
title_full_unstemmed |
Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments |
title_sort |
resequencing and snp discovery of amur ide (leuciscus waleckii) provides insights into local adaptations to extreme environments |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/fb93327e123f4a2f9fb49ce9b4637271 |
work_keys_str_mv |
AT shuangyiwang resequencingandsnpdiscoveryofamurideleuciscuswaleckiiprovidesinsightsintolocaladaptationstoextremeenvironments AT youyikuang resequencingandsnpdiscoveryofamurideleuciscuswaleckiiprovidesinsightsintolocaladaptationstoextremeenvironments AT liqunliang resequencingandsnpdiscoveryofamurideleuciscuswaleckiiprovidesinsightsintolocaladaptationstoextremeenvironments AT bosun resequencingandsnpdiscoveryofamurideleuciscuswaleckiiprovidesinsightsintolocaladaptationstoextremeenvironments AT xuefeizhao resequencingandsnpdiscoveryofamurideleuciscuswaleckiiprovidesinsightsintolocaladaptationstoextremeenvironments AT liminzhang resequencingandsnpdiscoveryofamurideleuciscuswaleckiiprovidesinsightsintolocaladaptationstoextremeenvironments AT yumeichang resequencingandsnpdiscoveryofamurideleuciscuswaleckiiprovidesinsightsintolocaladaptationstoextremeenvironments |
_version_ |
1718393249429716992 |