Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving
The quantum alternating operator ansatz (QAOA) is a prominent example of variational quantum algorithms. We propose a generalized QAOA called CD-QAOA, which is inspired by the counterdiabatic driving procedure, designed for quantum many-body systems and optimized using a reinforcement learning (RL)...
Guardado en:
Autores principales: | Jiahao Yao, Lin Lin, Marin Bukov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fba1d9d8fbc84730afc49b3402694c83 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust preparation of many-body ground states in Jaynes–Cummings lattices
por: Kang Cai, et al.
Publicado: (2021) -
Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space
por: Shuoming An, et al.
Publicado: (2016) -
Machine learning outperforms thermodynamics in measuring how well a many-body system learns a drive
por: Weishun Zhong, et al.
Publicado: (2021) -
Ground state solutions and infinitely many solutions for a nonlinear Choquard equation
por: Tianfang Wang, et al.
Publicado: (2021) -
Wave-Particle Duality of Many-Body Quantum States
por: Christoph Dittel, et al.
Publicado: (2021)