Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving
The quantum alternating operator ansatz (QAOA) is a prominent example of variational quantum algorithms. We propose a generalized QAOA called CD-QAOA, which is inspired by the counterdiabatic driving procedure, designed for quantum many-body systems and optimized using a reinforcement learning (RL)...
Enregistré dans:
Auteurs principaux: | Jiahao Yao, Lin Lin, Marin Bukov |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Physical Society
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fba1d9d8fbc84730afc49b3402694c83 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Robust preparation of many-body ground states in Jaynes–Cummings lattices
par: Kang Cai, et autres
Publié: (2021) -
Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space
par: Shuoming An, et autres
Publié: (2016) -
Machine learning outperforms thermodynamics in measuring how well a many-body system learns a drive
par: Weishun Zhong, et autres
Publié: (2021) -
Ground state solutions and infinitely many solutions for a nonlinear Choquard equation
par: Tianfang Wang, et autres
Publié: (2021) -
Wave-Particle Duality of Many-Body Quantum States
par: Christoph Dittel, et autres
Publié: (2021)