Bootstrap quantification of estimation uncertainties in network degree distributions
Abstract We propose a new method of nonparametric bootstrap to quantify estimation uncertainties in functions of network degree distribution in large ultra sparse networks. Both network degree distribution and network order are assumed to be unknown. The key idea is based on adaptation of the “block...
Guardado en:
Autores principales: | Yulia R. Gel, Vyacheslav Lyubchich, L. Leticia Ramirez Ramirez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fbaa778d226d40e5bc096a82d7dd2355 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of jackknife and bootstrap for defining confidence intervals for pairwise agreement measures.
por: Ana Severiano, et al.
Publicado: (2011) -
Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
por: Leland S. Hu, et al.
Publicado: (2021) -
Numerical bootstrap in quantum mechanics
por: Jyotirmoy Bhattacharya, et al.
Publicado: (2021) -
Convolutional Neural Networks Refitting by Bootstrapping for Tracking People in a Mobile Robot
por: Claudia Álvarez-Aparicio, et al.
Publicado: (2021) -
An artificial immune system with bootstrap sampling for the diagnosis of recurrent endometrial cancers
por: Chang Chih-Yen, et al.
Publicado: (2021)