Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
Predicting a priori local defects in amorphous materials remains a grand challenge. Here authors combine a rotationally non-invariant structure representation with deep-learning to predict the propensity for shear transformations of amorphous solids for different loading orientations, only given the...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fbaccc18a78f426ab79a24a83fc9e2fd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fbaccc18a78f426ab79a24a83fc9e2fd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fbaccc18a78f426ab79a24a83fc9e2fd2021-12-02T13:30:08ZPredicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning10.1038/s41467-021-21806-z2041-1723https://doaj.org/article/fbaccc18a78f426ab79a24a83fc9e2fd2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21806-zhttps://doaj.org/toc/2041-1723Predicting a priori local defects in amorphous materials remains a grand challenge. Here authors combine a rotationally non-invariant structure representation with deep-learning to predict the propensity for shear transformations of amorphous solids for different loading orientations, only given the static structure.Zhao FanEvan MaNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Zhao Fan Evan Ma Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning |
description |
Predicting a priori local defects in amorphous materials remains a grand challenge. Here authors combine a rotationally non-invariant structure representation with deep-learning to predict the propensity for shear transformations of amorphous solids for different loading orientations, only given the static structure. |
format |
article |
author |
Zhao Fan Evan Ma |
author_facet |
Zhao Fan Evan Ma |
author_sort |
Zhao Fan |
title |
Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning |
title_short |
Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning |
title_full |
Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning |
title_fullStr |
Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning |
title_full_unstemmed |
Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning |
title_sort |
predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/fbaccc18a78f426ab79a24a83fc9e2fd |
work_keys_str_mv |
AT zhaofan predictingorientationdependentplasticsusceptibilityfromstaticstructureinamorphoussolidsviadeeplearning AT evanma predictingorientationdependentplasticsusceptibilityfromstaticstructureinamorphoussolidsviadeeplearning |
_version_ |
1718393010718244864 |