Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning

Predicting a priori local defects in amorphous materials remains a grand challenge. Here authors combine a rotationally non-invariant structure representation with deep-learning to predict the propensity for shear transformations of amorphous solids for different loading orientations, only given the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhao Fan, Evan Ma
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/fbaccc18a78f426ab79a24a83fc9e2fd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fbaccc18a78f426ab79a24a83fc9e2fd
record_format dspace
spelling oai:doaj.org-article:fbaccc18a78f426ab79a24a83fc9e2fd2021-12-02T13:30:08ZPredicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning10.1038/s41467-021-21806-z2041-1723https://doaj.org/article/fbaccc18a78f426ab79a24a83fc9e2fd2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21806-zhttps://doaj.org/toc/2041-1723Predicting a priori local defects in amorphous materials remains a grand challenge. Here authors combine a rotationally non-invariant structure representation with deep-learning to predict the propensity for shear transformations of amorphous solids for different loading orientations, only given the static structure.Zhao FanEvan MaNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Zhao Fan
Evan Ma
Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
description Predicting a priori local defects in amorphous materials remains a grand challenge. Here authors combine a rotationally non-invariant structure representation with deep-learning to predict the propensity for shear transformations of amorphous solids for different loading orientations, only given the static structure.
format article
author Zhao Fan
Evan Ma
author_facet Zhao Fan
Evan Ma
author_sort Zhao Fan
title Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
title_short Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
title_full Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
title_fullStr Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
title_full_unstemmed Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
title_sort predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/fbaccc18a78f426ab79a24a83fc9e2fd
work_keys_str_mv AT zhaofan predictingorientationdependentplasticsusceptibilityfromstaticstructureinamorphoussolidsviadeeplearning
AT evanma predictingorientationdependentplasticsusceptibilityfromstaticstructureinamorphoussolidsviadeeplearning
_version_ 1718393010718244864