Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
Predicting a priori local defects in amorphous materials remains a grand challenge. Here authors combine a rotationally non-invariant structure representation with deep-learning to predict the propensity for shear transformations of amorphous solids for different loading orientations, only given the...
Enregistré dans:
Auteurs principaux: | Zhao Fan, Evan Ma |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fbaccc18a78f426ab79a24a83fc9e2fd |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Universal features of amorphous plasticity
par: Zoe Budrikis, et autres
Publié: (2017) -
Aqueous and pH dependent coacervation method for taste masking of paracetamol via amorphous solid dispersion formation
par: Basheer Al-kasmi, et autres
Publié: (2021) -
High-harmonic generation in amorphous solids
par: Yong Sing You, et autres
Publié: (2017) -
Surface energy of strained amorphous solids
par: Rafael D. Schulman, et autres
Publié: (2018) -
Predicting synthesizability of crystalline materials via deep learning
par: Ali Davariashtiyani, et autres
Publié: (2021)