Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
Predicting a priori local defects in amorphous materials remains a grand challenge. Here authors combine a rotationally non-invariant structure representation with deep-learning to predict the propensity for shear transformations of amorphous solids for different loading orientations, only given the...
Guardado en:
Autores principales: | Zhao Fan, Evan Ma |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fbaccc18a78f426ab79a24a83fc9e2fd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Universal features of amorphous plasticity
por: Zoe Budrikis, et al.
Publicado: (2017) -
Aqueous and pH dependent coacervation method for taste masking of paracetamol via amorphous solid dispersion formation
por: Basheer Al-kasmi, et al.
Publicado: (2021) -
High-harmonic generation in amorphous solids
por: Yong Sing You, et al.
Publicado: (2017) -
Surface energy of strained amorphous solids
por: Rafael D. Schulman, et al.
Publicado: (2018) -
Predicting synthesizability of crystalline materials via deep learning
por: Ali Davariashtiyani, et al.
Publicado: (2021)