Memes: A motif analysis environment in R using tools from the MEME Suite.

Identification of biopolymer motifs represents a key step in the analysis of biological sequences. The MEME Suite is a widely used toolkit for comprehensive analysis of biopolymer motifs; however, these tools are poorly integrated within popular analysis frameworks like the R/Bioconductor project, c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Spencer L Nystrom, Daniel J McKay
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/fbc84a12ed224762bdcec2056ca00705
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Identification of biopolymer motifs represents a key step in the analysis of biological sequences. The MEME Suite is a widely used toolkit for comprehensive analysis of biopolymer motifs; however, these tools are poorly integrated within popular analysis frameworks like the R/Bioconductor project, creating barriers to their use. Here we present memes, an R package that provides a seamless R interface to a selection of popular MEME Suite tools. memes provides a novel "data aware" interface to these tools, enabling rapid and complex discriminative motif analysis workflows. In addition to interfacing with popular MEME Suite tools, memes leverages existing R/Bioconductor data structures to store the multidimensional data returned by MEME Suite tools for rapid data access and manipulation. Finally, memes provides data visualization capabilities to facilitate communication of results. memes is available as a Bioconductor package at https://bioconductor.org/packages/memes, and the source code can be found at github.com/snystrom/memes.