On topological properties of COVID-19: predicting and assessing pandemic risk with network statistics
Abstract The spread of coronavirus disease 2019 (COVID-19) has caused more than 80 million confirmed infected cases and more than 1.8 million people died as of 31 December 2020. While it is essential to quantify risk and characterize transmission dynamics in closed populations using Susceptible-Infe...
Guardado en:
Autores principales: | Mike K. P. So, Amanda M. Y. Chu, Agnes Tiwari, Jacky N. L. Chan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fbcff1f4ca4b455d86aca1cb06c77886 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hidden neural networks for transmembrane protein topology prediction
por: Ioannis A. Tamposis, et al.
Publicado: (2021) -
A network-based method to assess the statistical significance of mild co-regulation effects.
por: Emőke-Ágnes Horvát, et al.
Publicado: (2013) -
Lattice topology dictates photon statistics
por: H. Esat Kondakci, et al.
Publicado: (2017) -
On topological properties of hierarchical hypercube network based on Ve and Ev degree
por: Zahra Nida, et al.
Publicado: (2021) -
Contact ability based topology control for predictable delay-tolerant networks
por: Hongsheng Chen, et al.
Publicado: (2021)