Oscillatory bifurcation problems for ODEs with logarithmic nonlinearity
We study the global structure of the oscillatory perturbed bifurcation problem which comes from the stationary logarithmic Schrödinger equation −u″(t)=λ(log(1+u(t))+sinu(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0,-{u}^{^{\prime\prime} }\left(t)=\lambda (\log \left(1+u\left(t))+\sin u\left(t)),\hspace{1.0em}u\...
Enregistré dans:
| Auteur principal: | Shibata Tetsutaro |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
De Gruyter
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/fbec466e8f424b4bbf631a0c452bb243 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On the evolutionary bifurcation curves for the one-dimensional prescribed mean curvature equation with logistic type
par: Zhang Jiajia, et autres
Publié: (2021) -
Oscillation of solutions to a generalized forced nonlinear conformable fractional differential equation
par: Ogunbanjo,A. M., et autres
Publié: (2019) -
Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations
par: Boscaggin Alberto, et autres
Publié: (2021) -
Prey-predator model in drainage system with migration and harvesting
par: Roy Banani, et autres
Publié: (2021) -
Third-order differential equations with three-point boundary conditions
par: Cabada Alberto, et autres
Publié: (2021)