Oscillatory bifurcation problems for ODEs with logarithmic nonlinearity
We study the global structure of the oscillatory perturbed bifurcation problem which comes from the stationary logarithmic Schrödinger equation −u″(t)=λ(log(1+u(t))+sinu(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0,-{u}^{^{\prime\prime} }\left(t)=\lambda (\log \left(1+u\left(t))+\sin u\left(t)),\hspace{1.0em}u\...
Guardado en:
Autor principal: | Shibata Tetsutaro |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fbec466e8f424b4bbf631a0c452bb243 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the evolutionary bifurcation curves for the one-dimensional prescribed mean curvature equation with logistic type
por: Zhang Jiajia, et al.
Publicado: (2021) -
Oscillation of solutions to a generalized forced nonlinear conformable fractional differential equation
por: Ogunbanjo,A. M., et al.
Publicado: (2019) -
Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations
por: Boscaggin Alberto, et al.
Publicado: (2021) -
Prey-predator model in drainage system with migration and harvesting
por: Roy Banani, et al.
Publicado: (2021) -
Third-order differential equations with three-point boundary conditions
por: Cabada Alberto, et al.
Publicado: (2021)