On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function
Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional in the post-q...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fbf51a87ebb24690b7d85b6e362f1b8f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fbf51a87ebb24690b7d85b6e362f1b8f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fbf51a87ebb24690b7d85b6e362f1b8f2021-11-25T19:07:06ZOn the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function10.3390/sym131121432073-8994https://doaj.org/article/fbf51a87ebb24690b7d85b6e362f1b8f2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2143https://doaj.org/toc/2073-8994Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional in the post-quantum calculus case for meromorphic functions provides new outcomes for research in the field. With the extended <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-operator, we establish certain inequalities’ relations concerning meromorphic functions. In the final part of the paper, a new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-analogue of the <i>q</i>-Wright type hypergeometric function is introduced. This function generalizes the classical and symmetrical Gauss hypergeometric function. All the obtained results are sharp.Adriana CătaşMDPI AGarticlemeromorphic functionsFekete–Szegö problem<i>p</i>,<i>q</i>-derivative operator<i>p</i>,<i>q</i>-Wright type hypergeometric functionMathematicsQA1-939ENSymmetry, Vol 13, Iss 2143, p 2143 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
meromorphic functions Fekete–Szegö problem <i>p</i>,<i>q</i>-derivative operator <i>p</i>,<i>q</i>-Wright type hypergeometric function Mathematics QA1-939 |
spellingShingle |
meromorphic functions Fekete–Szegö problem <i>p</i>,<i>q</i>-derivative operator <i>p</i>,<i>q</i>-Wright type hypergeometric function Mathematics QA1-939 Adriana Cătaş On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function |
description |
Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional in the post-quantum calculus case for meromorphic functions provides new outcomes for research in the field. With the extended <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-operator, we establish certain inequalities’ relations concerning meromorphic functions. In the final part of the paper, a new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-analogue of the <i>q</i>-Wright type hypergeometric function is introduced. This function generalizes the classical and symmetrical Gauss hypergeometric function. All the obtained results are sharp. |
format |
article |
author |
Adriana Cătaş |
author_facet |
Adriana Cătaş |
author_sort |
Adriana Cătaş |
title |
On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function |
title_short |
On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function |
title_full |
On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function |
title_fullStr |
On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function |
title_full_unstemmed |
On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function |
title_sort |
on the fekete–szegö problem for meromorphic functions associated with <i>p</i>,<i>q</i>-wright type hypergeometric function |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/fbf51a87ebb24690b7d85b6e362f1b8f |
work_keys_str_mv |
AT adrianacatas onthefeketeszegoproblemformeromorphicfunctionsassociatedwithipiiqiwrighttypehypergeometricfunction |
_version_ |
1718410317658062848 |