On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function

Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional in the post-q...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Adriana Cătaş
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/fbf51a87ebb24690b7d85b6e362f1b8f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fbf51a87ebb24690b7d85b6e362f1b8f
record_format dspace
spelling oai:doaj.org-article:fbf51a87ebb24690b7d85b6e362f1b8f2021-11-25T19:07:06ZOn the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function10.3390/sym131121432073-8994https://doaj.org/article/fbf51a87ebb24690b7d85b6e362f1b8f2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2143https://doaj.org/toc/2073-8994Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional in the post-quantum calculus case for meromorphic functions provides new outcomes for research in the field. With the extended <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-operator, we establish certain inequalities’ relations concerning meromorphic functions. In the final part of the paper, a new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-analogue of the <i>q</i>-Wright type hypergeometric function is introduced. This function generalizes the classical and symmetrical Gauss hypergeometric function. All the obtained results are sharp.Adriana CătaşMDPI AGarticlemeromorphic functionsFekete–Szegö problem<i>p</i>,<i>q</i>-derivative operator<i>p</i>,<i>q</i>-Wright type hypergeometric functionMathematicsQA1-939ENSymmetry, Vol 13, Iss 2143, p 2143 (2021)
institution DOAJ
collection DOAJ
language EN
topic meromorphic functions
Fekete–Szegö problem
<i>p</i>,<i>q</i>-derivative operator
<i>p</i>,<i>q</i>-Wright type hypergeometric function
Mathematics
QA1-939
spellingShingle meromorphic functions
Fekete–Szegö problem
<i>p</i>,<i>q</i>-derivative operator
<i>p</i>,<i>q</i>-Wright type hypergeometric function
Mathematics
QA1-939
Adriana Cătaş
On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function
description Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional in the post-quantum calculus case for meromorphic functions provides new outcomes for research in the field. With the extended <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-operator, we establish certain inequalities’ relations concerning meromorphic functions. In the final part of the paper, a new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-analogue of the <i>q</i>-Wright type hypergeometric function is introduced. This function generalizes the classical and symmetrical Gauss hypergeometric function. All the obtained results are sharp.
format article
author Adriana Cătaş
author_facet Adriana Cătaş
author_sort Adriana Cătaş
title On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function
title_short On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function
title_full On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function
title_fullStr On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function
title_full_unstemmed On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function
title_sort on the fekete–szegö problem for meromorphic functions associated with <i>p</i>,<i>q</i>-wright type hypergeometric function
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/fbf51a87ebb24690b7d85b6e362f1b8f
work_keys_str_mv AT adrianacatas onthefeketeszegoproblemformeromorphicfunctionsassociatedwithipiiqiwrighttypehypergeometricfunction
_version_ 1718410317658062848