The evaluation of synthetic datasets on training AlexNet for surgical tool detection
Surgical tool recognition is a key task to analyze surgical workflow, in order to improve the efficiency and safety of laparoscopic surgeries. The laparoscopic videos are important sources to conduct this task, However, there are some challenges to analyze these videos. Focus on the imbalanced datas...
Enregistré dans:
Auteurs principaux: | Ding N., Jalal N. A., Alshirbaji T. A., Möller K. |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fc0bcc8fc2e346828f6b83dbcf6182a5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A REAL TIME FACE RECOGNITION SYSTEM USING ALEXNET DEEP CONVOLUTIONAL NETWORK TRANSFER LEARNING MODEL
par: LAWRENCE O. OMOTOSHO, et autres
Publié: (2021) -
Data Recording Framework for Physiological and Surgical Data in Operating Theatres
par: Abdulbaki Alshirbaji Tamer, et autres
Publié: (2020) -
DeepPaSTL: Spatio-Temporal Deep Learning Methods for Predicting Long-Term Pasture Terrains Using Synthetic Datasets
par: Murtaza Rangwala, et autres
Publié: (2021) -
State Monitoring Method for Tool Wear in Aerospace Manufacturing Processes Based on a Convolutional Neural Network (CNN)
par: Wei Dai, et autres
Publié: (2021) -
Chip Appearance Defect Recognition Based on Convolutional Neural Network
par: Jun Wang, et autres
Publié: (2021)