Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning
Dual-energy X-ray absorptiometry and the Fracture Risk Assessment Tool are recommended tools for osteoporotic fracture risk evaluation, but are underutilized. Here, the authors present an opportunistic tool to identify fractures, predict bone mineral density and evaluate fracture risk using plain pe...
Guardado en:
Autores principales: | Chen-I Hsieh, Kang Zheng, Chihung Lin, Ling Mei, Le Lu, Weijian Li, Fang-Ping Chen, Yirui Wang, Xiaoyun Zhou, Fakai Wang, Guotong Xie, Jing Xiao, Shun Miao, Chang-Fu Kuo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc208611dd7b451284c2f6c63a709b15 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated detection of cervical ossification of the posterior longitudinal ligament in plain lateral radiographs of the cervical spine using a convolutional neural network
por: Masataka Miura, et al.
Publicado: (2021) -
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
por: Chi-Tung Cheng, et al.
Publicado: (2021) -
Common Variants in OPG Confer Risk to Bone Mineral Density Variation and Osteoporosis Fractures
por: Xiaoyong Sheng, et al.
Publicado: (2017) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Yu-Xing Tang, et al.
Publicado: (2020) -
Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures
por: Unnur Styrkarsdottir, et al.
Publicado: (2016)