Power Profile and Thresholding Assisted Multi-Label NILM Classification
Next-generation power systems aim at optimizing the energy consumption of household appliances by utilising computationally intelligent techniques, referred to as load monitoring. Non-intrusive load monitoring (NILM) is considered to be one of the most cost-effective methods for load classification....
Guardado en:
Autores principales: | Muhammad Asif Ali Rehmani, Saad Aslam, Shafiqur Rahman Tito, Snjezana Soltic, Pieter Nieuwoudt, Neel Pandey, Mollah Daud Ahmed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc21117175654e7c9b1f57342b74ab5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Highly Accurate NILM: With an Electro-Spectral Space That Best Fits Algorithm’s National Deployment Requirements
por: Netzah Calamaro, et al.
Publicado: (2021) -
SMART METERING SYSTEMS: АN EMPIRICAL ANALYSIS OF TECHNOLOGY PERCEPTION FACTORS
por: P. S. Kuzmin
Publicado: (2021) -
Appliance Level Energy Characterization of Residential Electricity Demand: Prospects, Challenges and Recommendations
por: Rehan Liaqat, et al.
Publicado: (2021) -
Design and implementation of an AI-based & IoT-enabled Home Energy Management System: A case study in Benguerir — Morocco
por: Abdelilah Rochd, et al.
Publicado: (2021) -
The SERL Observatory Dataset: Longitudinal Smart Meter Electricity and Gas Data, Survey, EPC and Climate Data for over 13,000 Households in Great Britain
por: Ellen Webborn, et al.
Publicado: (2021)