Hermite–Hadamard-Type Inequalities for Generalized Convex Functions via the Caputo-Fabrizio Fractional Integral Operator
Due to applications in almost every area of mathematics, the theory of convex and nonconvex functions becomes a hot area of research for many mathematicians. In the present research, we generalize the Hermite–Hadamard-type inequalities for p,h-convex functions. Moreover, we establish some new inequa...
Guardado en:
Autores principales: | Dong Zhang, Muhammad Shoaib Saleem, Thongchai Botmart, M. S. Zahoor, R. Bano |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc26ba8c4bef4aef89f69f82724cc4ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function
por: Saad Ihsan Butt, et al.
Publicado: (2021) -
Generalized proportional fractional integral Hermite–Hadamard’s inequalities
por: Tariq A. Aljaaidi, et al.
Publicado: (2021) -
Inequalities of the Type Hermite–Hadamard–Jensen–Mercer for Strong Convexity
por: Muhammad Adil Khan, et al.
Publicado: (2021) -
Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
por: Budak Huseyin, et al.
Publicado: (2021) -
New Weighted Hermite–Hadamard Type Inequalities for Differentiable h-Convex and Quasi h-Convex Mappings
por: Muhammad Amer Latif
Publicado: (2021)