Hermite–Hadamard-Type Inequalities for Generalized Convex Functions via the Caputo-Fabrizio Fractional Integral Operator
Due to applications in almost every area of mathematics, the theory of convex and nonconvex functions becomes a hot area of research for many mathematicians. In the present research, we generalize the Hermite–Hadamard-type inequalities for p,h-convex functions. Moreover, we establish some new inequa...
Enregistré dans:
Auteurs principaux: | Dong Zhang, Muhammad Shoaib Saleem, Thongchai Botmart, M. S. Zahoor, R. Bano |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fc26ba8c4bef4aef89f69f82724cc4ab |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function
par: Saad Ihsan Butt, et autres
Publié: (2021) -
Generalized proportional fractional integral Hermite–Hadamard’s inequalities
par: Tariq A. Aljaaidi, et autres
Publié: (2021) -
Inequalities of the Type Hermite–Hadamard–Jensen–Mercer for Strong Convexity
par: Muhammad Adil Khan, et autres
Publié: (2021) -
Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
par: Budak Huseyin, et autres
Publié: (2021) -
New Weighted Hermite–Hadamard Type Inequalities for Differentiable h-Convex and Quasi h-Convex Mappings
par: Muhammad Amer Latif
Publié: (2021)