Data-science driven autonomous process optimization
An automated closed-loop system optimizes a stereoselective Suzuki-Miyaura reaction using a machine learning algorithm that incorporates unbiased and categorical process parameters.
Guardado en:
Autores principales: | Melodie Christensen, Lars P. E. Yunker, Folarin Adedeji, Florian Häse, Loïc M. Roch, Tobias Gensch, Gabriel dos Passos Gomes, Tara Zepel, Matthew S. Sigman, Alán Aspuru-Guzik, Jason E. Hein |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc4f62943ff64484b8d72e580bfeb7ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Designing and understanding light-harvesting devices with machine learning
por: Florian Häse, et al.
Publicado: (2020) -
Automated design of superconducting circuits and its application to 4-local couplers
por: Tim Menke, et al.
Publicado: (2021) -
Autonomous model protocell division driven by molecular replication
por: J. W. Taylor, et al.
Publicado: (2017) -
Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments
por: Mario Krenn, et al.
Publicado: (2021) -
An artificial spiking quantum neuron
por: Lasse Bjørn Kristensen, et al.
Publicado: (2021)