On the maximum number of period annuli for second order conservative equations

We consider a second order scalar conservative differential equation whose potential function is a Morse function with a finite number of critical points and is unbounded at infinity. We give an upper bound for the number of nonglobal nontrivial period annuli of the equation and prove that the upper...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Armands Gritsans, Inara Yermachenko
Formato: article
Lenguaje:EN
Publicado: Vilnius Gediminas Technical University 2021
Materias:
Acceso en línea:https://doaj.org/article/fc54a7ad90ec49ea83dc9abd3dc3d582
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We consider a second order scalar conservative differential equation whose potential function is a Morse function with a finite number of critical points and is unbounded at infinity. We give an upper bound for the number of nonglobal nontrivial period annuli of the equation and prove that the upper bound obtained is sharp. We use tree theory in our considerations.