On the maximum number of period annuli for second order conservative equations

We consider a second order scalar conservative differential equation whose potential function is a Morse function with a finite number of critical points and is unbounded at infinity. We give an upper bound for the number of nonglobal nontrivial period annuli of the equation and prove that the upper...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Armands Gritsans, Inara Yermachenko
Formato: article
Lenguaje:EN
Publicado: Vilnius Gediminas Technical University 2021
Materias:
Acceso en línea:https://doaj.org/article/fc54a7ad90ec49ea83dc9abd3dc3d582
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fc54a7ad90ec49ea83dc9abd3dc3d582
record_format dspace
spelling oai:doaj.org-article:fc54a7ad90ec49ea83dc9abd3dc3d5822021-11-29T09:14:00ZOn the maximum number of period annuli for second order conservative equations1392-62921648-351010.3846/mma.2021.13979https://doaj.org/article/fc54a7ad90ec49ea83dc9abd3dc3d5822021-11-01T00:00:00Zhttps://journals.vgtu.lt/index.php/MMA/article/view/13979https://doaj.org/toc/1392-6292https://doaj.org/toc/1648-3510We consider a second order scalar conservative differential equation whose potential function is a Morse function with a finite number of critical points and is unbounded at infinity. We give an upper bound for the number of nonglobal nontrivial period annuli of the equation and prove that the upper bound obtained is sharp. We use tree theory in our considerations.Armands GritsansInara YermachenkoVilnius Gediminas Technical Universityarticleconservative equationmorse functionperiod annulusbinary treeMathematicsQA1-939ENMathematical Modelling and Analysis, Vol 26, Iss 4, Pp 612-630 (2021)
institution DOAJ
collection DOAJ
language EN
topic conservative equation
morse function
period annulus
binary tree
Mathematics
QA1-939
spellingShingle conservative equation
morse function
period annulus
binary tree
Mathematics
QA1-939
Armands Gritsans
Inara Yermachenko
On the maximum number of period annuli for second order conservative equations
description We consider a second order scalar conservative differential equation whose potential function is a Morse function with a finite number of critical points and is unbounded at infinity. We give an upper bound for the number of nonglobal nontrivial period annuli of the equation and prove that the upper bound obtained is sharp. We use tree theory in our considerations.
format article
author Armands Gritsans
Inara Yermachenko
author_facet Armands Gritsans
Inara Yermachenko
author_sort Armands Gritsans
title On the maximum number of period annuli for second order conservative equations
title_short On the maximum number of period annuli for second order conservative equations
title_full On the maximum number of period annuli for second order conservative equations
title_fullStr On the maximum number of period annuli for second order conservative equations
title_full_unstemmed On the maximum number of period annuli for second order conservative equations
title_sort on the maximum number of period annuli for second order conservative equations
publisher Vilnius Gediminas Technical University
publishDate 2021
url https://doaj.org/article/fc54a7ad90ec49ea83dc9abd3dc3d582
work_keys_str_mv AT armandsgritsans onthemaximumnumberofperiodannuliforsecondorderconservativeequations
AT inarayermachenko onthemaximumnumberofperiodannuliforsecondorderconservativeequations
_version_ 1718407442468962304