Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
Facial Expression Recognition (FER) has gained considerable attention in affective computing due to its vast area of applications. Diverse approaches and methods have been considered for a robust FER in the field, but only a few works considered the intensity of emotion embedded in the expression. E...
Guardado en:
Autores principales: | Olufisayo Ekundayo, Serestina Viriri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc749ed5308345939a17863f58239d1a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multilabel Acoustic Event Classification Using Real-World Urban Data and Physical Redundancy of Sensors
por: Ester Vidaña-Vila, et al.
Publicado: (2021) -
Ulixes: Facial Recognition Privacy with Adversarial Machine Learning
por: Cilloni Thomas, et al.
Publicado: (2022) -
Two-Stage Recognition and beyond for Compound Facial Emotion Recognition
por: Dorota Kamińska, et al.
Publicado: (2021) -
A Modified AUC for Training Convolutional Neural Networks: Taking Confidence Into Account
por: Khashayar Namdar, et al.
Publicado: (2021) -
Planning horizons as an ordinal entropic measure of organization
por: Frederic B. Jennings Jr.
Publicado: (2016)