Genome-Wide Identification of Long Non-Coding RNAs and Their Potential Functions in Poplar Growth and Phenylalanine Biosynthesis

Poplar is an important bioenergy tree species. lncRNAs play important roles in various biological regulatory processes, and their expression pattern is more tissue-specific than mRNAs. In this study, P. deltoides “Danhong” (Pd) and P. simonii “Tongliao1” (Ps) with different growth rates and wood qua...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lei Zhang, Xiaolan Ge, Jiujun Du, Xingqi Cheng, Xiaopeng Peng, Jianjun Hu
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/fc7c3882673a4f6397de05e60318cca7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Poplar is an important bioenergy tree species. lncRNAs play important roles in various biological regulatory processes, and their expression pattern is more tissue-specific than mRNAs. In this study, P. deltoides “Danhong” (Pd) and P. simonii “Tongliao1” (Ps) with different growth rates and wood quality were used as experimental materials, and the transcriptomes of their shoot apical meristem, xylem, and phloem were sequenced. Furthermore, high-throughput RNA sequencing analysis revealed that the expression patterns of genes and lncRNAs are different between the two genotypes. 6,355 lncRNAs were identified. Based on target prediction, lncRNAs and target genes were involved in ADP binding, oxidoreductase activity, phenylpropanoid biosynthesis, and cyanoamino acid metabolism. The DElncRNAs in two poplars were co-expressed with transcription factors and structural genes of lignin and flavonoid pathways. In addition, we found the potential target lncRNAs of miRNA. This result provides basic evidence for a better understanding of the regulatory role of lncRNAs in regulating phenylalanine molecular pathways and wood formation.