Materials informatics for the screening of multi-principal elements and high-entropy alloys
The identification of high entropy alloys is challenging given the vastness of the compositional space associated with these systems. Here the authors propose a supervised learning strategy for the efficient screening of high entropy alloys, whose hardness predictions are validated by experiments.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc87f74cda1d42ca8e000180ad4c8e7c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fc87f74cda1d42ca8e000180ad4c8e7c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fc87f74cda1d42ca8e000180ad4c8e7c2021-12-02T14:38:57ZMaterials informatics for the screening of multi-principal elements and high-entropy alloys10.1038/s41467-019-10533-12041-1723https://doaj.org/article/fc87f74cda1d42ca8e000180ad4c8e7c2019-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10533-1https://doaj.org/toc/2041-1723The identification of high entropy alloys is challenging given the vastness of the compositional space associated with these systems. Here the authors propose a supervised learning strategy for the efficient screening of high entropy alloys, whose hardness predictions are validated by experiments.J. M. RickmanH. M. ChanM. P. HarmerJ. A. SmeltzerC. J. MarvelA. RoyG. BalasubramanianNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q J. M. Rickman H. M. Chan M. P. Harmer J. A. Smeltzer C. J. Marvel A. Roy G. Balasubramanian Materials informatics for the screening of multi-principal elements and high-entropy alloys |
description |
The identification of high entropy alloys is challenging given the vastness of the compositional space associated with these systems. Here the authors propose a supervised learning strategy for the efficient screening of high entropy alloys, whose hardness predictions are validated by experiments. |
format |
article |
author |
J. M. Rickman H. M. Chan M. P. Harmer J. A. Smeltzer C. J. Marvel A. Roy G. Balasubramanian |
author_facet |
J. M. Rickman H. M. Chan M. P. Harmer J. A. Smeltzer C. J. Marvel A. Roy G. Balasubramanian |
author_sort |
J. M. Rickman |
title |
Materials informatics for the screening of multi-principal elements and high-entropy alloys |
title_short |
Materials informatics for the screening of multi-principal elements and high-entropy alloys |
title_full |
Materials informatics for the screening of multi-principal elements and high-entropy alloys |
title_fullStr |
Materials informatics for the screening of multi-principal elements and high-entropy alloys |
title_full_unstemmed |
Materials informatics for the screening of multi-principal elements and high-entropy alloys |
title_sort |
materials informatics for the screening of multi-principal elements and high-entropy alloys |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/fc87f74cda1d42ca8e000180ad4c8e7c |
work_keys_str_mv |
AT jmrickman materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys AT hmchan materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys AT mpharmer materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys AT jasmeltzer materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys AT cjmarvel materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys AT aroy materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys AT gbalasubramanian materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys |
_version_ |
1718390809304236032 |