Materials informatics for the screening of multi-principal elements and high-entropy alloys

The identification of high entropy alloys is challenging given the vastness of the compositional space associated with these systems. Here the authors propose a supervised learning strategy for the efficient screening of high entropy alloys, whose hardness predictions are validated by experiments.

Guardado en:
Detalles Bibliográficos
Autores principales: J. M. Rickman, H. M. Chan, M. P. Harmer, J. A. Smeltzer, C. J. Marvel, A. Roy, G. Balasubramanian
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/fc87f74cda1d42ca8e000180ad4c8e7c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fc87f74cda1d42ca8e000180ad4c8e7c
record_format dspace
spelling oai:doaj.org-article:fc87f74cda1d42ca8e000180ad4c8e7c2021-12-02T14:38:57ZMaterials informatics for the screening of multi-principal elements and high-entropy alloys10.1038/s41467-019-10533-12041-1723https://doaj.org/article/fc87f74cda1d42ca8e000180ad4c8e7c2019-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10533-1https://doaj.org/toc/2041-1723The identification of high entropy alloys is challenging given the vastness of the compositional space associated with these systems. Here the authors propose a supervised learning strategy for the efficient screening of high entropy alloys, whose hardness predictions are validated by experiments.J. M. RickmanH. M. ChanM. P. HarmerJ. A. SmeltzerC. J. MarvelA. RoyG. BalasubramanianNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
J. M. Rickman
H. M. Chan
M. P. Harmer
J. A. Smeltzer
C. J. Marvel
A. Roy
G. Balasubramanian
Materials informatics for the screening of multi-principal elements and high-entropy alloys
description The identification of high entropy alloys is challenging given the vastness of the compositional space associated with these systems. Here the authors propose a supervised learning strategy for the efficient screening of high entropy alloys, whose hardness predictions are validated by experiments.
format article
author J. M. Rickman
H. M. Chan
M. P. Harmer
J. A. Smeltzer
C. J. Marvel
A. Roy
G. Balasubramanian
author_facet J. M. Rickman
H. M. Chan
M. P. Harmer
J. A. Smeltzer
C. J. Marvel
A. Roy
G. Balasubramanian
author_sort J. M. Rickman
title Materials informatics for the screening of multi-principal elements and high-entropy alloys
title_short Materials informatics for the screening of multi-principal elements and high-entropy alloys
title_full Materials informatics for the screening of multi-principal elements and high-entropy alloys
title_fullStr Materials informatics for the screening of multi-principal elements and high-entropy alloys
title_full_unstemmed Materials informatics for the screening of multi-principal elements and high-entropy alloys
title_sort materials informatics for the screening of multi-principal elements and high-entropy alloys
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/fc87f74cda1d42ca8e000180ad4c8e7c
work_keys_str_mv AT jmrickman materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys
AT hmchan materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys
AT mpharmer materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys
AT jasmeltzer materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys
AT cjmarvel materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys
AT aroy materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys
AT gbalasubramanian materialsinformaticsforthescreeningofmultiprincipalelementsandhighentropyalloys
_version_ 1718390809304236032