Materials informatics for the screening of multi-principal elements and high-entropy alloys
The identification of high entropy alloys is challenging given the vastness of the compositional space associated with these systems. Here the authors propose a supervised learning strategy for the efficient screening of high entropy alloys, whose hardness predictions are validated by experiments.
Guardado en:
Autores principales: | J. M. Rickman, H. M. Chan, M. P. Harmer, J. A. Smeltzer, C. J. Marvel, A. Roy, G. Balasubramanian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc87f74cda1d42ca8e000180ad4c8e7c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A perspective on corrosion of multi-principal element alloys
por: N. Birbilis, et al.
Publicado: (2021) -
Expanded dataset of mechanical properties and observed phases of multi-principal element alloys
por: Christopher K. H. Borg, et al.
Publicado: (2020) -
Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways
por: Qing-Jie Li, et al.
Publicado: (2019) -
Corrosion of high entropy alloys
por: Yao Qiu, et al.
Publicado: (2017) -
Excellent ballistic impact resistance of Al0.3CoCrFeNi multi-principal element alloy with unique bimodal microstructure
por: Saideep Muskeri, et al.
Publicado: (2021)