Materials informatics for the screening of multi-principal elements and high-entropy alloys
The identification of high entropy alloys is challenging given the vastness of the compositional space associated with these systems. Here the authors propose a supervised learning strategy for the efficient screening of high entropy alloys, whose hardness predictions are validated by experiments.
Enregistré dans:
Auteurs principaux: | J. M. Rickman, H. M. Chan, M. P. Harmer, J. A. Smeltzer, C. J. Marvel, A. Roy, G. Balasubramanian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fc87f74cda1d42ca8e000180ad4c8e7c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A perspective on corrosion of multi-principal element alloys
par: N. Birbilis, et autres
Publié: (2021) -
Expanded dataset of mechanical properties and observed phases of multi-principal element alloys
par: Christopher K. H. Borg, et autres
Publié: (2020) -
Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways
par: Qing-Jie Li, et autres
Publié: (2019) -
Corrosion of high entropy alloys
par: Yao Qiu, et autres
Publié: (2017) -
Excellent ballistic impact resistance of Al0.3CoCrFeNi multi-principal element alloy with unique bimodal microstructure
par: Saideep Muskeri, et autres
Publié: (2021)