Increasing Superstructure Optimization Capacity Through Self-Learning Surrogate Models
Simulation-based optimization models are widely applied to find optimal operating conditions of processes. Often, computational challenges arise from model complexity, making the generation of reliable design solutions difficult. We propose an algorithm for replacing non-linear process simulation mo...
Guardado en:
Autores principales: | Julia Granacher, Ivan Daniel Kantor, François Maréchal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc8e64d0cca34a4e968769333a745d00 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
BIMETALLIC AU/AG METAL SUPERSTRUCTURES FROM MACROMOLECULAR METAL COMPLEXES IN SOLID-STATE
por: DIAZ,CARLOS, et al.
Publicado: (2013) -
Dynamic Simulation-Based Surrogate Model for the Dimensioning of Building Energy Systems
por: Leonidas Zouloumis, et al.
Publicado: (2021) -
Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models
por: Piotr Kurgan
Publicado: (2021) -
Development of surrogate models in reliability-based design optimization: A review
por: Xiaoke Li, et al.
Publicado: (2021) -
Synthesis of Cost-Optimal Heat Exchanger Networks Using a Novel Stochastic Algorithm and a Modified Stage-Wised Superstructure
por: Jiaxing Chen, et al.
Publicado: (2021)