An Efficient SVM-Based Feature Selection Model for Cancer Classification Using High-Dimensional Microarray Data
Feature selection is critical in analyzing microarray data, which has many features (genes) or dimensions. However, with only a few samples the large search space and time consumed during their selection make selecting relevant and informative genes that improve classification performance a complex...
Guardado en:
Autores principales: | Passent El Kafrawy, Hanaa Fathi, Mohammed Qaraad, Ayda K. Kelany, Xumin Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc9ce6eb64744b63be5363e9993b5579 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Feature Selection Methods Based on Symmetric Uncertainty Coefficients and Independent Classification Information
por: Li Zhang, et al.
Publicado: (2021) -
Fault Diagnosis of Rolling Bearing Based on Probability box Theory and GA-SVM
por: Hong Tang, et al.
Publicado: (2020) -
Minimum redundancy maximal relevance gene selection of apoptosis pathway genes in peripheral blood mononuclear cells of HIV-infected patients with antiretroviral therapy-associated mitochondrial toxicity
por: Eliezer Bose, et al.
Publicado: (2021) -
An image feature selection approach for dimensionality reduction based on kNN and SVM for AkT proteins
por: Shruti Jain, et al.
Publicado: (2019) -
Histogram Entropy Representation and Prototype Based Machine Learning Approach for Malware Family Classification
por: Byunghyun Baek, et al.
Publicado: (2021)