Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training
Muscle weakness is the primary impairment causing mobility difficulty among stroke survivors. Millions of people are unable to live normally because of mobility difficulty every year. Strength training is an effective method to improve lower extremity ability but is limited by the shortage of medica...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fca25c713f6342318b84c6d378a8cdf8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fca25c713f6342318b84c6d378a8cdf8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fca25c713f6342318b84c6d378a8cdf82021-11-25T18:12:25ZAdaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training10.3390/machines91103012075-1702https://doaj.org/article/fca25c713f6342318b84c6d378a8cdf82021-11-01T00:00:00Zhttps://www.mdpi.com/2075-1702/9/11/301https://doaj.org/toc/2075-1702Muscle weakness is the primary impairment causing mobility difficulty among stroke survivors. Millions of people are unable to live normally because of mobility difficulty every year. Strength training is an effective method to improve lower extremity ability but is limited by the shortage of medical staff. Thus, this paper proposes a robot-assisted active training (RAAT) by an adaptive admittance control scheme with virtual reality interaction (AACVRI). AACVRI consists of a stiffness variable admittance controller, an adaptive controller, and virtual reality (VR) interactions. In order to provide human-robot reality interactions corresponding to virtual scenes, an admittance control law with variable stiffness term was developed to define the mechanics property of the end effector. The adaptive controller improves tracking performances by compensating interaction forces and dynamics model deviations. A virtual training environment including action following, event feedback, and competition mechanism is utilized for improving boring training experience and engaging users to maintain active state in cycling training. To verify controller performances and the feasibility of RAAT, experiments were conducted with eight subjects. Admittance control provides desired variable interactions along the trajectory. The robot responds to different virtual events by changing admittance parameters according to trigger feedbacks. Adaptive control ensures tracking errors at a low level. Subjects were maintained in active state during this strength training. Their physiological signals significantly increased, and interaction forces were at a high level. RAAT is a feasible approach for lower limb strength training, and users can independently complete high-quality active strength training under RAAT.Musong LinHongbo WangJianye NiuYu TianXincheng WangGuowei LiuLi SunMDPI AGarticleadmittance controlhuman-robot interactionrehabilitation roboticsstrokevirtual realityMechanical engineering and machineryTJ1-1570ENMachines, Vol 9, Iss 301, p 301 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
admittance control human-robot interaction rehabilitation robotics stroke virtual reality Mechanical engineering and machinery TJ1-1570 |
spellingShingle |
admittance control human-robot interaction rehabilitation robotics stroke virtual reality Mechanical engineering and machinery TJ1-1570 Musong Lin Hongbo Wang Jianye Niu Yu Tian Xincheng Wang Guowei Liu Li Sun Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training |
description |
Muscle weakness is the primary impairment causing mobility difficulty among stroke survivors. Millions of people are unable to live normally because of mobility difficulty every year. Strength training is an effective method to improve lower extremity ability but is limited by the shortage of medical staff. Thus, this paper proposes a robot-assisted active training (RAAT) by an adaptive admittance control scheme with virtual reality interaction (AACVRI). AACVRI consists of a stiffness variable admittance controller, an adaptive controller, and virtual reality (VR) interactions. In order to provide human-robot reality interactions corresponding to virtual scenes, an admittance control law with variable stiffness term was developed to define the mechanics property of the end effector. The adaptive controller improves tracking performances by compensating interaction forces and dynamics model deviations. A virtual training environment including action following, event feedback, and competition mechanism is utilized for improving boring training experience and engaging users to maintain active state in cycling training. To verify controller performances and the feasibility of RAAT, experiments were conducted with eight subjects. Admittance control provides desired variable interactions along the trajectory. The robot responds to different virtual events by changing admittance parameters according to trigger feedbacks. Adaptive control ensures tracking errors at a low level. Subjects were maintained in active state during this strength training. Their physiological signals significantly increased, and interaction forces were at a high level. RAAT is a feasible approach for lower limb strength training, and users can independently complete high-quality active strength training under RAAT. |
format |
article |
author |
Musong Lin Hongbo Wang Jianye Niu Yu Tian Xincheng Wang Guowei Liu Li Sun |
author_facet |
Musong Lin Hongbo Wang Jianye Niu Yu Tian Xincheng Wang Guowei Liu Li Sun |
author_sort |
Musong Lin |
title |
Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training |
title_short |
Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training |
title_full |
Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training |
title_fullStr |
Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training |
title_full_unstemmed |
Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training |
title_sort |
adaptive admittance control scheme with virtual reality interaction for robot-assisted lower limb strength training |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/fca25c713f6342318b84c6d378a8cdf8 |
work_keys_str_mv |
AT musonglin adaptiveadmittancecontrolschemewithvirtualrealityinteractionforrobotassistedlowerlimbstrengthtraining AT hongbowang adaptiveadmittancecontrolschemewithvirtualrealityinteractionforrobotassistedlowerlimbstrengthtraining AT jianyeniu adaptiveadmittancecontrolschemewithvirtualrealityinteractionforrobotassistedlowerlimbstrengthtraining AT yutian adaptiveadmittancecontrolschemewithvirtualrealityinteractionforrobotassistedlowerlimbstrengthtraining AT xinchengwang adaptiveadmittancecontrolschemewithvirtualrealityinteractionforrobotassistedlowerlimbstrengthtraining AT guoweiliu adaptiveadmittancecontrolschemewithvirtualrealityinteractionforrobotassistedlowerlimbstrengthtraining AT lisun adaptiveadmittancecontrolschemewithvirtualrealityinteractionforrobotassistedlowerlimbstrengthtraining |
_version_ |
1718411539068747776 |