Detecting departures from meta-ellipticity for multivariate stationary time series
A test for detecting departures from meta-ellipticity for multivariate stationary time series is proposed. The large sample behavior of the test statistic is shown to depend in a complicated way on the underlying copula as well as on the serial dependence. Valid asymptotic critical values are obtain...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fcb0d831674945efa519d8ea1bdd9c1d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | A test for detecting departures from meta-ellipticity for multivariate stationary time series is proposed. The large sample behavior of the test statistic is shown to depend in a complicated way on the underlying copula as well as on the serial dependence. Valid asymptotic critical values are obtained by a bootstrap device based on subsampling. The finite-sample performance of the test is investigated in a large-scale simulation study, and the theoretical results are illustrated by a case study involving financial log returns. |
---|