An <italic toggle="yes">In Vitro</italic> Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from <italic toggle="yes">Salmonella</italic> to Commensal <italic toggle="yes">Escherichia coli</italic>

ABSTRACT The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Roderick M. Card, Shaun A. Cawthraw, Javier Nunez-Garcia, Richard J. Ellis, Gemma Kay, Mark J. Pallen, Martin J. Woodward, Muna F. Anjum
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/fcbcd0da39ce44bd8ccb85030835a4ed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fcbcd0da39ce44bd8ccb85030835a4ed
record_format dspace
spelling oai:doaj.org-article:fcbcd0da39ce44bd8ccb85030835a4ed2021-11-15T15:51:44ZAn <italic toggle="yes">In Vitro</italic> Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from <italic toggle="yes">Salmonella</italic> to Commensal <italic toggle="yes">Escherichia coli</italic>10.1128/mBio.00777-172150-7511https://doaj.org/article/fcbcd0da39ce44bd8ccb85030835a4ed2017-09-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00777-17https://doaj.org/toc/2150-7511ABSTRACT The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase blaCTX-M1. We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo. It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections. Transfer of antimicrobial resistance via plasmid exchange is of particular concern as it enables unrelated bacteria to acquire resistance. The gastrointestinal tract is replete with bacteria and provides an environment for plasmid transfer between commensals and pathogens. Here we use the chicken gut microbiota as an exemplar to model the effects of bacterial infection, antibiotic administration, and plasmid transfer. We show that transfer of a multidrug-resistant plasmid from the zoonotic pathogen Salmonella to commensal Escherichia coli occurs at a high rate, even in the absence of antibiotic administration. Our work demonstrates that the in vitro gut model provides a powerful screening tool that can be used to assess and refine interventions that mitigate the spread of antibiotic resistance in the gut before undertaking animal studies.Roderick M. CardShaun A. CawthrawJavier Nunez-GarciaRichard J. EllisGemma KayMark J. PallenMartin J. WoodwardMuna F. AnjumAmerican Society for MicrobiologyarticleEscherichia coliSalmonellaantimicrobial resistanceenteric pathogenshorizontal gene transferplasmidsMicrobiologyQR1-502ENmBio, Vol 8, Iss 4 (2017)
institution DOAJ
collection DOAJ
language EN
topic Escherichia coli
Salmonella
antimicrobial resistance
enteric pathogens
horizontal gene transfer
plasmids
Microbiology
QR1-502
spellingShingle Escherichia coli
Salmonella
antimicrobial resistance
enteric pathogens
horizontal gene transfer
plasmids
Microbiology
QR1-502
Roderick M. Card
Shaun A. Cawthraw
Javier Nunez-Garcia
Richard J. Ellis
Gemma Kay
Mark J. Pallen
Martin J. Woodward
Muna F. Anjum
An <italic toggle="yes">In Vitro</italic> Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from <italic toggle="yes">Salmonella</italic> to Commensal <italic toggle="yes">Escherichia coli</italic>
description ABSTRACT The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase blaCTX-M1. We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo. It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections. Transfer of antimicrobial resistance via plasmid exchange is of particular concern as it enables unrelated bacteria to acquire resistance. The gastrointestinal tract is replete with bacteria and provides an environment for plasmid transfer between commensals and pathogens. Here we use the chicken gut microbiota as an exemplar to model the effects of bacterial infection, antibiotic administration, and plasmid transfer. We show that transfer of a multidrug-resistant plasmid from the zoonotic pathogen Salmonella to commensal Escherichia coli occurs at a high rate, even in the absence of antibiotic administration. Our work demonstrates that the in vitro gut model provides a powerful screening tool that can be used to assess and refine interventions that mitigate the spread of antibiotic resistance in the gut before undertaking animal studies.
format article
author Roderick M. Card
Shaun A. Cawthraw
Javier Nunez-Garcia
Richard J. Ellis
Gemma Kay
Mark J. Pallen
Martin J. Woodward
Muna F. Anjum
author_facet Roderick M. Card
Shaun A. Cawthraw
Javier Nunez-Garcia
Richard J. Ellis
Gemma Kay
Mark J. Pallen
Martin J. Woodward
Muna F. Anjum
author_sort Roderick M. Card
title An <italic toggle="yes">In Vitro</italic> Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from <italic toggle="yes">Salmonella</italic> to Commensal <italic toggle="yes">Escherichia coli</italic>
title_short An <italic toggle="yes">In Vitro</italic> Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from <italic toggle="yes">Salmonella</italic> to Commensal <italic toggle="yes">Escherichia coli</italic>
title_full An <italic toggle="yes">In Vitro</italic> Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from <italic toggle="yes">Salmonella</italic> to Commensal <italic toggle="yes">Escherichia coli</italic>
title_fullStr An <italic toggle="yes">In Vitro</italic> Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from <italic toggle="yes">Salmonella</italic> to Commensal <italic toggle="yes">Escherichia coli</italic>
title_full_unstemmed An <italic toggle="yes">In Vitro</italic> Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from <italic toggle="yes">Salmonella</italic> to Commensal <italic toggle="yes">Escherichia coli</italic>
title_sort <italic toggle="yes">in vitro</italic> chicken gut model demonstrates transfer of a multidrug resistance plasmid from <italic toggle="yes">salmonella</italic> to commensal <italic toggle="yes">escherichia coli</italic>
publisher American Society for Microbiology
publishDate 2017
url https://doaj.org/article/fcbcd0da39ce44bd8ccb85030835a4ed
work_keys_str_mv AT roderickmcard anitalictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT shaunacawthraw anitalictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT javiernunezgarcia anitalictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT richardjellis anitalictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT gemmakay anitalictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT markjpallen anitalictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT martinjwoodward anitalictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT munafanjum anitalictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT roderickmcard italictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT shaunacawthraw italictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT javiernunezgarcia italictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT richardjellis italictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT gemmakay italictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT markjpallen italictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT martinjwoodward italictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
AT munafanjum italictoggleyesinvitroitalicchickengutmodeldemonstratestransferofamultidrugresistanceplasmidfromitalictoggleyessalmonellaitalictocommensalitalictoggleyesescherichiacoliitalic
_version_ 1718427376508993536