Topic-Based Document-Level Sentiment Analysis Using Contextual Cues
Document-level Sentiment Analysis is a complex task that implies the analysis of large textual content that can incorporate multiple contradictory polarities at the phrase and word levels. Most of the current approaches either represent textual data using pre-trained word embeddings without consider...
Guardado en:
Autores principales: | Ciprian-Octavian Truică, Elena-Simona Apostol, Maria-Luiza Șerban, Adrian Paschke |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fcc251ef6f8741c1bd58e33288986d24 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning-based Sentiment Analysis and Topic Modeling on Tourism During Covid-19 Pandemic
por: Ram Krishn Mishra, et al.
Publicado: (2021) -
Real-Time Infoveillance of Moroccan Social Media Users’ Sentiments towards the COVID-19 Pandemic and Its Management
por: Abdelghani Ghanem, et al.
Publicado: (2021) -
Topicalizations, left dislocations and the left-periphery
por: Bernard Bortolussi
Publicado: (2017) -
Dynamic Analysis of User-Role and Topic-Influence for Topic Propagation in Social Networks
por: Jing Wang, et al.
Publicado: (2021) -
Una mirada epistemométrica de la Revista Médica de Chile y su aporte al conocimiento en Medicina
por: Krauskopf,Manuel, et al.
Publicado: (2008)