Efficient sparse coding in early sensory processing: lessons from signal recovery.
Sensory representations are not only sparse, but often overcomplete: coding units significantly outnumber the input units. For models of neural coding this overcompleteness poses a computational challenge for shaping the signal processing channels as well as for using the large and sparse representa...
Enregistré dans:
Auteurs principaux: | András Lörincz, Zsolt Palotai, Gábor Szirtes |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2012
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fcc25e19051f45d9b8fedf6e8f4a0889 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Sparse-PE: A Performance-Efficient Processing Engine Core for Sparse Convolutional Neural Networks
par: Mahmood Azhar Qureshi, et autres
Publié: (2021) -
Complexity and diversity in sparse code priors improve receptive field characterization of Macaque V1 neurons.
par: Ziniu Wu, et autres
Publié: (2021) -
Complexity and diversity in sparse code priors improve receptive field characterization of Macaque V1 neurons
par: Ziniu Wu, et autres
Publié: (2021) -
Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.
par: Jonathan J Hunt, et autres
Publié: (2013) -
Efficient sensory cortical coding optimizes pursuit eye movements
par: Bing Liu, et autres
Publié: (2016)