A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy

X-ray free electron lasers, with their ultrashort highly coherent pulses, opened up the opportunity of probing ultrafast nano- and atomic-scale dynamics in amorphous and disordered material systems via speckle visibility spectroscopy. However, the anticipated count rate in a typical experiment is us...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yanwen Sun, Vincent Esposito, Philip Adam Hart, Conny Hansson, Haoyuan Li, Kazutaka Nakahara, James Paton MacArthur, Silke Nelson, Takahiro Sato, Sanghoon Song, Peihao Sun, Paul Fuoss, Mark Sutton, Diling Zhu
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/fcc73409b9684d0c82f0d95d550136be
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fcc73409b9684d0c82f0d95d550136be
record_format dspace
spelling oai:doaj.org-article:fcc73409b9684d0c82f0d95d550136be2021-11-11T15:07:14ZA Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy10.3390/app1121100412076-3417https://doaj.org/article/fcc73409b9684d0c82f0d95d550136be2021-10-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10041https://doaj.org/toc/2076-3417X-ray free electron lasers, with their ultrashort highly coherent pulses, opened up the opportunity of probing ultrafast nano- and atomic-scale dynamics in amorphous and disordered material systems via speckle visibility spectroscopy. However, the anticipated count rate in a typical experiment is usually low. Therefore, visibility needs to be extracted via photon statistics analysis, i.e., by estimating the probabilities of multiple photons per pixel events using pixelated detectors. Considering the realistic X-ray detector responses including charge cloud sharing between pixels, pixel readout noise, and gain non-uniformity, speckle visibility extraction relying on photon assignment algorithms are often computationally demanding and suffer from systematic errors. In this paper, we present a systematic study of the commonly-used algorithms by applying them to an experimental data set containing small-angle coherent scattering with visibility levels ranging from below 1% to ∼60%. We also propose a contrast calibration protocol and show that a computationally lightweight algorithm can be implemented for high-speed correlation evaluation.Yanwen SunVincent EspositoPhilip Adam HartConny HanssonHaoyuan LiKazutaka NakaharaJames Paton MacArthurSilke NelsonTakahiro SatoSanghoon SongPeihao SunPaul FuossMark SuttonDiling ZhuMDPI AGarticlespecklevisibilitycontrastTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10041, p 10041 (2021)
institution DOAJ
collection DOAJ
language EN
topic speckle
visibility
contrast
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle speckle
visibility
contrast
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Yanwen Sun
Vincent Esposito
Philip Adam Hart
Conny Hansson
Haoyuan Li
Kazutaka Nakahara
James Paton MacArthur
Silke Nelson
Takahiro Sato
Sanghoon Song
Peihao Sun
Paul Fuoss
Mark Sutton
Diling Zhu
A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy
description X-ray free electron lasers, with their ultrashort highly coherent pulses, opened up the opportunity of probing ultrafast nano- and atomic-scale dynamics in amorphous and disordered material systems via speckle visibility spectroscopy. However, the anticipated count rate in a typical experiment is usually low. Therefore, visibility needs to be extracted via photon statistics analysis, i.e., by estimating the probabilities of multiple photons per pixel events using pixelated detectors. Considering the realistic X-ray detector responses including charge cloud sharing between pixels, pixel readout noise, and gain non-uniformity, speckle visibility extraction relying on photon assignment algorithms are often computationally demanding and suffer from systematic errors. In this paper, we present a systematic study of the commonly-used algorithms by applying them to an experimental data set containing small-angle coherent scattering with visibility levels ranging from below 1% to ∼60%. We also propose a contrast calibration protocol and show that a computationally lightweight algorithm can be implemented for high-speed correlation evaluation.
format article
author Yanwen Sun
Vincent Esposito
Philip Adam Hart
Conny Hansson
Haoyuan Li
Kazutaka Nakahara
James Paton MacArthur
Silke Nelson
Takahiro Sato
Sanghoon Song
Peihao Sun
Paul Fuoss
Mark Sutton
Diling Zhu
author_facet Yanwen Sun
Vincent Esposito
Philip Adam Hart
Conny Hansson
Haoyuan Li
Kazutaka Nakahara
James Paton MacArthur
Silke Nelson
Takahiro Sato
Sanghoon Song
Peihao Sun
Paul Fuoss
Mark Sutton
Diling Zhu
author_sort Yanwen Sun
title A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy
title_short A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy
title_full A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy
title_fullStr A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy
title_full_unstemmed A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy
title_sort contrast calibration protocol for x-ray speckle visibility spectroscopy
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/fcc73409b9684d0c82f0d95d550136be
work_keys_str_mv AT yanwensun acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT vincentesposito acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT philipadamhart acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT connyhansson acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT haoyuanli acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT kazutakanakahara acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT jamespatonmacarthur acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT silkenelson acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT takahirosato acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT sanghoonsong acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT peihaosun acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT paulfuoss acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT marksutton acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT dilingzhu acontrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT yanwensun contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT vincentesposito contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT philipadamhart contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT connyhansson contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT haoyuanli contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT kazutakanakahara contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT jamespatonmacarthur contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT silkenelson contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT takahirosato contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT sanghoonsong contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT peihaosun contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT paulfuoss contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT marksutton contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
AT dilingzhu contrastcalibrationprotocolforxrayspecklevisibilityspectroscopy
_version_ 1718437189610635264