High-fidelity entangling gate for double-quantum-dot spin qubits

Quantum computing: high-fidelity two-qubit entangling gate Scientists have invented a new way to entangle electron spins. Entanglement, or “spooky action at a distance,” is one of the key requirements for a universal quantum computer, because it enables the transfer of information between quantum bi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: John M. Nichol, Lucas A. Orona, Shannon P. Harvey, Saeed Fallahi, Geoffrey C. Gardner, Michael J. Manfra, Amir Yacoby
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Acceso en línea:https://doaj.org/article/fcc75c9f610d4cb1adac4c46b63da340
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fcc75c9f610d4cb1adac4c46b63da340
record_format dspace
spelling oai:doaj.org-article:fcc75c9f610d4cb1adac4c46b63da3402021-12-02T12:33:55ZHigh-fidelity entangling gate for double-quantum-dot spin qubits10.1038/s41534-016-0003-12056-6387https://doaj.org/article/fcc75c9f610d4cb1adac4c46b63da3402017-01-01T00:00:00Zhttps://doi.org/10.1038/s41534-016-0003-1https://doaj.org/toc/2056-6387Quantum computing: high-fidelity two-qubit entangling gate Scientists have invented a new way to entangle electron spins. Entanglement, or “spooky action at a distance,” is one of the key requirements for a universal quantum computer, because it enables the transfer of information between quantum bits, or qubits. For qubits consisting of electron spins trapped in semiconductors, the Coulomb interaction between electrons can be harnessed to create entanglement. In this approach, however, the coherence of the individual spins is susceptible to spurious charge noise in the semiconductor. Amir Yacoby and colleagues at Harvard University and Purdue University overcame this challenge by using a large magnetic field gradient in a double-quantum-dot spin qubit to suppress the effects charge noise. By mitigating charge-noise-induced decoherence, the team demonstrated a two-qubit entangling gate fidelity of 90%. This high-fidelity entangling operation marks a significant milestone for spin qubits and points the way toward a scalable high-fidelity spin-based quantum computer.John M. NicholLucas A. OronaShannon P. HarveySaeed FallahiGeoffrey C. GardnerMichael J. ManfraAmir YacobyNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 3, Iss 1, Pp 1-5 (2017)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
John M. Nichol
Lucas A. Orona
Shannon P. Harvey
Saeed Fallahi
Geoffrey C. Gardner
Michael J. Manfra
Amir Yacoby
High-fidelity entangling gate for double-quantum-dot spin qubits
description Quantum computing: high-fidelity two-qubit entangling gate Scientists have invented a new way to entangle electron spins. Entanglement, or “spooky action at a distance,” is one of the key requirements for a universal quantum computer, because it enables the transfer of information between quantum bits, or qubits. For qubits consisting of electron spins trapped in semiconductors, the Coulomb interaction between electrons can be harnessed to create entanglement. In this approach, however, the coherence of the individual spins is susceptible to spurious charge noise in the semiconductor. Amir Yacoby and colleagues at Harvard University and Purdue University overcame this challenge by using a large magnetic field gradient in a double-quantum-dot spin qubit to suppress the effects charge noise. By mitigating charge-noise-induced decoherence, the team demonstrated a two-qubit entangling gate fidelity of 90%. This high-fidelity entangling operation marks a significant milestone for spin qubits and points the way toward a scalable high-fidelity spin-based quantum computer.
format article
author John M. Nichol
Lucas A. Orona
Shannon P. Harvey
Saeed Fallahi
Geoffrey C. Gardner
Michael J. Manfra
Amir Yacoby
author_facet John M. Nichol
Lucas A. Orona
Shannon P. Harvey
Saeed Fallahi
Geoffrey C. Gardner
Michael J. Manfra
Amir Yacoby
author_sort John M. Nichol
title High-fidelity entangling gate for double-quantum-dot spin qubits
title_short High-fidelity entangling gate for double-quantum-dot spin qubits
title_full High-fidelity entangling gate for double-quantum-dot spin qubits
title_fullStr High-fidelity entangling gate for double-quantum-dot spin qubits
title_full_unstemmed High-fidelity entangling gate for double-quantum-dot spin qubits
title_sort high-fidelity entangling gate for double-quantum-dot spin qubits
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/fcc75c9f610d4cb1adac4c46b63da340
work_keys_str_mv AT johnmnichol highfidelityentanglinggatefordoublequantumdotspinqubits
AT lucasaorona highfidelityentanglinggatefordoublequantumdotspinqubits
AT shannonpharvey highfidelityentanglinggatefordoublequantumdotspinqubits
AT saeedfallahi highfidelityentanglinggatefordoublequantumdotspinqubits
AT geoffreycgardner highfidelityentanglinggatefordoublequantumdotspinqubits
AT michaeljmanfra highfidelityentanglinggatefordoublequantumdotspinqubits
AT amiryacoby highfidelityentanglinggatefordoublequantumdotspinqubits
_version_ 1718393897599631360