High-fidelity entangling gate for double-quantum-dot spin qubits
Quantum computing: high-fidelity two-qubit entangling gate Scientists have invented a new way to entangle electron spins. Entanglement, or “spooky action at a distance,” is one of the key requirements for a universal quantum computer, because it enables the transfer of information between quantum bi...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fcc75c9f610d4cb1adac4c46b63da340 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fcc75c9f610d4cb1adac4c46b63da340 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fcc75c9f610d4cb1adac4c46b63da3402021-12-02T12:33:55ZHigh-fidelity entangling gate for double-quantum-dot spin qubits10.1038/s41534-016-0003-12056-6387https://doaj.org/article/fcc75c9f610d4cb1adac4c46b63da3402017-01-01T00:00:00Zhttps://doi.org/10.1038/s41534-016-0003-1https://doaj.org/toc/2056-6387Quantum computing: high-fidelity two-qubit entangling gate Scientists have invented a new way to entangle electron spins. Entanglement, or “spooky action at a distance,” is one of the key requirements for a universal quantum computer, because it enables the transfer of information between quantum bits, or qubits. For qubits consisting of electron spins trapped in semiconductors, the Coulomb interaction between electrons can be harnessed to create entanglement. In this approach, however, the coherence of the individual spins is susceptible to spurious charge noise in the semiconductor. Amir Yacoby and colleagues at Harvard University and Purdue University overcame this challenge by using a large magnetic field gradient in a double-quantum-dot spin qubit to suppress the effects charge noise. By mitigating charge-noise-induced decoherence, the team demonstrated a two-qubit entangling gate fidelity of 90%. This high-fidelity entangling operation marks a significant milestone for spin qubits and points the way toward a scalable high-fidelity spin-based quantum computer.John M. NicholLucas A. OronaShannon P. HarveySaeed FallahiGeoffrey C. GardnerMichael J. ManfraAmir YacobyNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 3, Iss 1, Pp 1-5 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 John M. Nichol Lucas A. Orona Shannon P. Harvey Saeed Fallahi Geoffrey C. Gardner Michael J. Manfra Amir Yacoby High-fidelity entangling gate for double-quantum-dot spin qubits |
description |
Quantum computing: high-fidelity two-qubit entangling gate Scientists have invented a new way to entangle electron spins. Entanglement, or “spooky action at a distance,” is one of the key requirements for a universal quantum computer, because it enables the transfer of information between quantum bits, or qubits. For qubits consisting of electron spins trapped in semiconductors, the Coulomb interaction between electrons can be harnessed to create entanglement. In this approach, however, the coherence of the individual spins is susceptible to spurious charge noise in the semiconductor. Amir Yacoby and colleagues at Harvard University and Purdue University overcame this challenge by using a large magnetic field gradient in a double-quantum-dot spin qubit to suppress the effects charge noise. By mitigating charge-noise-induced decoherence, the team demonstrated a two-qubit entangling gate fidelity of 90%. This high-fidelity entangling operation marks a significant milestone for spin qubits and points the way toward a scalable high-fidelity spin-based quantum computer. |
format |
article |
author |
John M. Nichol Lucas A. Orona Shannon P. Harvey Saeed Fallahi Geoffrey C. Gardner Michael J. Manfra Amir Yacoby |
author_facet |
John M. Nichol Lucas A. Orona Shannon P. Harvey Saeed Fallahi Geoffrey C. Gardner Michael J. Manfra Amir Yacoby |
author_sort |
John M. Nichol |
title |
High-fidelity entangling gate for double-quantum-dot spin qubits |
title_short |
High-fidelity entangling gate for double-quantum-dot spin qubits |
title_full |
High-fidelity entangling gate for double-quantum-dot spin qubits |
title_fullStr |
High-fidelity entangling gate for double-quantum-dot spin qubits |
title_full_unstemmed |
High-fidelity entangling gate for double-quantum-dot spin qubits |
title_sort |
high-fidelity entangling gate for double-quantum-dot spin qubits |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/fcc75c9f610d4cb1adac4c46b63da340 |
work_keys_str_mv |
AT johnmnichol highfidelityentanglinggatefordoublequantumdotspinqubits AT lucasaorona highfidelityentanglinggatefordoublequantumdotspinqubits AT shannonpharvey highfidelityentanglinggatefordoublequantumdotspinqubits AT saeedfallahi highfidelityentanglinggatefordoublequantumdotspinqubits AT geoffreycgardner highfidelityentanglinggatefordoublequantumdotspinqubits AT michaeljmanfra highfidelityentanglinggatefordoublequantumdotspinqubits AT amiryacoby highfidelityentanglinggatefordoublequantumdotspinqubits |
_version_ |
1718393897599631360 |