Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus

ABSTRACT Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiolo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: St. Elmo Wilken, Jonathan M. Monk, Patrick A. Leggieri, Christopher E. Lawson, Thomas S. Lankiewicz, Susanna Seppälä, Chris G. Daum, Jerry Jenkins, Anna M. Lipzen, Stephen J. Mondo, Kerrie W. Barry, Igor V. Grigoriev, John K. Henske, Michael K. Theodorou, Bernhard O. Palsson, Linda R. Petzold, Michelle A. O’Malley
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://doaj.org/article/fccac7e8ae6141e8ab56f68f9ad37092
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fccac7e8ae6141e8ab56f68f9ad37092
record_format dspace
spelling oai:doaj.org-article:fccac7e8ae6141e8ab56f68f9ad370922021-12-02T19:22:16ZExperimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus10.1128/mSystems.00002-212379-5077https://doaj.org/article/fccac7e8ae6141e8ab56f68f9ad370922021-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00002-21https://doaj.org/toc/2379-5077ABSTRACT Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omics approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing. Here, we introduce a high-quality genome of the anaerobic fungus Neocallimastix lanati from which we constructed the first genome-scale metabolic model of an anaerobic fungus. Relative to its size (200 Mbp, sequenced at 62× depth), it is the least fragmented publicly available gut fungal genome to date. Of the 1,788 lignocellulolytic enzymes annotated in the genome, 585 are associated with the fungal cellulosome, underscoring the powerful lignocellulolytic potential of N. lanati. The genome-scale metabolic model captures the primary metabolism of N. lanati and accurately predicts experimentally validated substrate utilization requirements. Additionally, metabolic flux predictions are verified by 13C metabolic flux analysis, demonstrating that the model faithfully describes the underlying fungal metabolism. Furthermore, the model clarifies key aspects of the hydrogenosomal metabolism and can be used as a platform to quantitatively study these biotechnologically important yet poorly understood early-branching fungi. IMPORTANCE Recent genomic analyses have revealed that anaerobic gut fungi possess both the largest number and highest diversity of lignocellulolytic enzymes of all sequenced fungi, explaining their ability to decompose lignocellulosic substrates, e.g., agricultural waste, into fermentable sugars. Despite their potential, the development of engineering methods for these organisms has been slow due to their complex life cycle, understudied metabolism, and challenging anaerobic culture requirements. Currently, there is no framework that can be used to combine multi-omic data sets to understand their physiology. Here, we introduce a high-quality PacBio-sequenced genome of the anaerobic gut fungus Neocallimastix lanati. Beyond identifying a trove of lignocellulolytic enzymes, we use this genome to construct the first genome-scale metabolic model of an anaerobic gut fungus. The model is experimentally validated and sheds light on unresolved metabolic features common to gut fungi. Model-guided analysis will pave the way for deepening our understanding of anaerobic gut fungi and provides a systematic framework to guide strain engineering efforts of these organisms for biotechnological use.St. Elmo WilkenJonathan M. MonkPatrick A. LeggieriChristopher E. LawsonThomas S. LankiewiczSusanna SeppäläChris G. DaumJerry JenkinsAnna M. LipzenStephen J. MondoKerrie W. BarryIgor V. GrigorievJohn K. HenskeMichael K. TheodorouBernhard O. PalssonLinda R. PetzoldMichelle A. O’MalleyAmerican Society for Microbiologyarticlegenome-scale metabolic model13C metabolic flux analysisnonmodel fungusNeocallimastigomycotaflux balance analysisNeocallimastix lanatiMicrobiologyQR1-502ENmSystems, Vol 6, Iss 1 (2021)
institution DOAJ
collection DOAJ
language EN
topic genome-scale metabolic model
13C metabolic flux analysis
nonmodel fungus
Neocallimastigomycota
flux balance analysis
Neocallimastix lanati
Microbiology
QR1-502
spellingShingle genome-scale metabolic model
13C metabolic flux analysis
nonmodel fungus
Neocallimastigomycota
flux balance analysis
Neocallimastix lanati
Microbiology
QR1-502
St. Elmo Wilken
Jonathan M. Monk
Patrick A. Leggieri
Christopher E. Lawson
Thomas S. Lankiewicz
Susanna Seppälä
Chris G. Daum
Jerry Jenkins
Anna M. Lipzen
Stephen J. Mondo
Kerrie W. Barry
Igor V. Grigoriev
John K. Henske
Michael K. Theodorou
Bernhard O. Palsson
Linda R. Petzold
Michelle A. O’Malley
Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus
description ABSTRACT Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omics approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing. Here, we introduce a high-quality genome of the anaerobic fungus Neocallimastix lanati from which we constructed the first genome-scale metabolic model of an anaerobic fungus. Relative to its size (200 Mbp, sequenced at 62× depth), it is the least fragmented publicly available gut fungal genome to date. Of the 1,788 lignocellulolytic enzymes annotated in the genome, 585 are associated with the fungal cellulosome, underscoring the powerful lignocellulolytic potential of N. lanati. The genome-scale metabolic model captures the primary metabolism of N. lanati and accurately predicts experimentally validated substrate utilization requirements. Additionally, metabolic flux predictions are verified by 13C metabolic flux analysis, demonstrating that the model faithfully describes the underlying fungal metabolism. Furthermore, the model clarifies key aspects of the hydrogenosomal metabolism and can be used as a platform to quantitatively study these biotechnologically important yet poorly understood early-branching fungi. IMPORTANCE Recent genomic analyses have revealed that anaerobic gut fungi possess both the largest number and highest diversity of lignocellulolytic enzymes of all sequenced fungi, explaining their ability to decompose lignocellulosic substrates, e.g., agricultural waste, into fermentable sugars. Despite their potential, the development of engineering methods for these organisms has been slow due to their complex life cycle, understudied metabolism, and challenging anaerobic culture requirements. Currently, there is no framework that can be used to combine multi-omic data sets to understand their physiology. Here, we introduce a high-quality PacBio-sequenced genome of the anaerobic gut fungus Neocallimastix lanati. Beyond identifying a trove of lignocellulolytic enzymes, we use this genome to construct the first genome-scale metabolic model of an anaerobic gut fungus. The model is experimentally validated and sheds light on unresolved metabolic features common to gut fungi. Model-guided analysis will pave the way for deepening our understanding of anaerobic gut fungi and provides a systematic framework to guide strain engineering efforts of these organisms for biotechnological use.
format article
author St. Elmo Wilken
Jonathan M. Monk
Patrick A. Leggieri
Christopher E. Lawson
Thomas S. Lankiewicz
Susanna Seppälä
Chris G. Daum
Jerry Jenkins
Anna M. Lipzen
Stephen J. Mondo
Kerrie W. Barry
Igor V. Grigoriev
John K. Henske
Michael K. Theodorou
Bernhard O. Palsson
Linda R. Petzold
Michelle A. O’Malley
author_facet St. Elmo Wilken
Jonathan M. Monk
Patrick A. Leggieri
Christopher E. Lawson
Thomas S. Lankiewicz
Susanna Seppälä
Chris G. Daum
Jerry Jenkins
Anna M. Lipzen
Stephen J. Mondo
Kerrie W. Barry
Igor V. Grigoriev
John K. Henske
Michael K. Theodorou
Bernhard O. Palsson
Linda R. Petzold
Michelle A. O’Malley
author_sort St. Elmo Wilken
title Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus
title_short Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus
title_full Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus
title_fullStr Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus
title_full_unstemmed Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus
title_sort experimentally validated reconstruction and analysis of a genome-scale metabolic model of an anaerobic neocallimastigomycota fungus
publisher American Society for Microbiology
publishDate 2021
url https://doaj.org/article/fccac7e8ae6141e8ab56f68f9ad37092
work_keys_str_mv AT stelmowilken experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT jonathanmmonk experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT patrickaleggieri experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT christopherelawson experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT thomasslankiewicz experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT susannaseppala experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT chrisgdaum experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT jerryjenkins experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT annamlipzen experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT stephenjmondo experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT kerriewbarry experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT igorvgrigoriev experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT johnkhenske experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT michaelktheodorou experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT bernhardopalsson experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT lindarpetzold experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
AT michelleaomalley experimentallyvalidatedreconstructionandanalysisofagenomescalemetabolicmodelofananaerobicneocallimastigomycotafungus
_version_ 1718376774590529536