Cell Lineage Infidelity in PDAC Progression and Therapy Resistance
Infidelity to cell fate occurs when differentiated cells lose their original identity and either revert to a more multipotent state or transdifferentiate into a different cell type, either within the same embryonic lineage or in an entirely different one. Whilst in certain circumstances, such as in...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fcd242144c6d44caa733c5e01c4b254d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Infidelity to cell fate occurs when differentiated cells lose their original identity and either revert to a more multipotent state or transdifferentiate into a different cell type, either within the same embryonic lineage or in an entirely different one. Whilst in certain circumstances, such as in wound repair, this process is beneficial, it can be hijacked by cancer cells to drive disease initiation and progression. Cell phenotype switching has been shown to also serve as a mechanism of drug resistance in some epithelial cancers. In pancreatic ductal adenocarcinoma (PDAC), the role of lineage infidelity and phenotype switching is still unclear. Two consensus molecular subtypes of PDAC have been proposed that mainly reflect the existence of cell lineages with different degrees of fidelity to pancreatic endodermal precursors. Indeed, the classical subtype of PDAC is characterised by the expression of endodermal lineage specifying transcription factors, while the more aggressive basal-like/squamous subtype is defined by epigenetic downregulation of endodermal genes and alterations in chromatin modifiers. Here, we summarise the current knowledge of mechanisms (genetic and epigenetic) of cell fate switching in PDAC and discuss how pancreatic organoids might help increase our understanding of both cell-intrinsic and cell-extrinsic factors governing lineage infidelity during the distinct phases of PDAC evolution. |
---|