Josephson-Anderson Relation and the Classical D’Alembert Paradox
Generalizing the prior work of P. W. Anderson and E. R. Huggins, we show that a “detailed Josephson-Anderson relation” holds for drag on a finite body held at rest in a classical incompressible fluid flowing with velocity V. The relation asserts an exact equality between the instantaneous power cons...
Guardado en:
Autor principal: | Gregory L. Eyink |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fcd5a2ae76e94acba9164e4e6f5b7b86 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiterminal Josephson Effect
por: Natalia Pankratova, et al.
Publicado: (2020) -
Comment on “Absence of a Dissipative Quantum Phase Transition in Josephson Junctions”
por: Pertti J. Hakonen, et al.
Publicado: (2021) -
Reply to “Comment on ‘Absence of a Dissipative Quantum Phase Transition in Josephson Junctions”’
por: A. Murani, et al.
Publicado: (2021) -
Generating Two Continuous Entangled Microwave Beams Using a dc-Biased Josephson Junction
por: A. Peugeot, et al.
Publicado: (2021) -
Diagrammatic approach for the twofold degenerate Anderson impurity model
por: Moscalenco, Vsevolod, et al.
Publicado: (2013)