MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds
Soybeans are nutritionally important as human food and animal feed. Apart from the macronutrients such as proteins and oils, soybeans are also high in health-beneficial secondary metabolites and are uniquely enriched in isoflavones among food crops. Isoflavone biosynthesis has been relatively well c...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd07f3d16b1b489184d4ccf5fd91bcb9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fd07f3d16b1b489184d4ccf5fd91bcb9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fd07f3d16b1b489184d4ccf5fd91bcb92021-11-11T17:25:40ZMATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds10.3390/ijms2221120171422-00671661-6596https://doaj.org/article/fd07f3d16b1b489184d4ccf5fd91bcb92021-11-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/21/12017https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067Soybeans are nutritionally important as human food and animal feed. Apart from the macronutrients such as proteins and oils, soybeans are also high in health-beneficial secondary metabolites and are uniquely enriched in isoflavones among food crops. Isoflavone biosynthesis has been relatively well characterized, but the mechanism of their transportation in soybean cells is largely unknown. Using the yeast model, we showed that GmMATE1 and GmMATE2 promoted the accumulation of isoflavones, mainly in the aglycone forms. Using the tobacco BrightYellow-2 (BY-2) cell model, GmMATE1 and GmMATE2 were found to be localized in the vacuolar membrane. Such subcellular localization supports the notion that GmMATE1 and GmMATE2 function by compartmentalizing isoflavones in the vacuole. Expression analyses showed that GmMATE1 was mainly expressed in the developing soybean pod. Soybean mutants defective in GmMATE1 had significantly reduced total seed isoflavone contents, whereas the overexpression of GmMATE1 in transgenic soybean promoted the accumulation of seed isoflavones. Our results showed that GmMATE1, and possibly also GmMATE2, are <i>bona fide</i> isoflavone transporters that promote the accumulation of isoflavones in soybean seeds.Ming-Sin NgYee-Shan KuWai-Shing YungSau-Shan ChengChun-Kuen ManLiu YangShikui SongGyuhwa ChungHon-Ming LamMDPI AGarticlesoybeanseedisoflavonemultidrug and toxic compound extrusion (MATE) transportergenisteindaidzeinBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 12017, p 12017 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
soybean seed isoflavone multidrug and toxic compound extrusion (MATE) transporter genistein daidzein Biology (General) QH301-705.5 Chemistry QD1-999 |
spellingShingle |
soybean seed isoflavone multidrug and toxic compound extrusion (MATE) transporter genistein daidzein Biology (General) QH301-705.5 Chemistry QD1-999 Ming-Sin Ng Yee-Shan Ku Wai-Shing Yung Sau-Shan Cheng Chun-Kuen Man Liu Yang Shikui Song Gyuhwa Chung Hon-Ming Lam MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds |
description |
Soybeans are nutritionally important as human food and animal feed. Apart from the macronutrients such as proteins and oils, soybeans are also high in health-beneficial secondary metabolites and are uniquely enriched in isoflavones among food crops. Isoflavone biosynthesis has been relatively well characterized, but the mechanism of their transportation in soybean cells is largely unknown. Using the yeast model, we showed that GmMATE1 and GmMATE2 promoted the accumulation of isoflavones, mainly in the aglycone forms. Using the tobacco BrightYellow-2 (BY-2) cell model, GmMATE1 and GmMATE2 were found to be localized in the vacuolar membrane. Such subcellular localization supports the notion that GmMATE1 and GmMATE2 function by compartmentalizing isoflavones in the vacuole. Expression analyses showed that GmMATE1 was mainly expressed in the developing soybean pod. Soybean mutants defective in GmMATE1 had significantly reduced total seed isoflavone contents, whereas the overexpression of GmMATE1 in transgenic soybean promoted the accumulation of seed isoflavones. Our results showed that GmMATE1, and possibly also GmMATE2, are <i>bona fide</i> isoflavone transporters that promote the accumulation of isoflavones in soybean seeds. |
format |
article |
author |
Ming-Sin Ng Yee-Shan Ku Wai-Shing Yung Sau-Shan Cheng Chun-Kuen Man Liu Yang Shikui Song Gyuhwa Chung Hon-Ming Lam |
author_facet |
Ming-Sin Ng Yee-Shan Ku Wai-Shing Yung Sau-Shan Cheng Chun-Kuen Man Liu Yang Shikui Song Gyuhwa Chung Hon-Ming Lam |
author_sort |
Ming-Sin Ng |
title |
MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds |
title_short |
MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds |
title_full |
MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds |
title_fullStr |
MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds |
title_full_unstemmed |
MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds |
title_sort |
mate-type proteins are responsible for isoflavone transportation and accumulation in soybean seeds |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/fd07f3d16b1b489184d4ccf5fd91bcb9 |
work_keys_str_mv |
AT mingsinng matetypeproteinsareresponsibleforisoflavonetransportationandaccumulationinsoybeanseeds AT yeeshanku matetypeproteinsareresponsibleforisoflavonetransportationandaccumulationinsoybeanseeds AT waishingyung matetypeproteinsareresponsibleforisoflavonetransportationandaccumulationinsoybeanseeds AT saushancheng matetypeproteinsareresponsibleforisoflavonetransportationandaccumulationinsoybeanseeds AT chunkuenman matetypeproteinsareresponsibleforisoflavonetransportationandaccumulationinsoybeanseeds AT liuyang matetypeproteinsareresponsibleforisoflavonetransportationandaccumulationinsoybeanseeds AT shikuisong matetypeproteinsareresponsibleforisoflavonetransportationandaccumulationinsoybeanseeds AT gyuhwachung matetypeproteinsareresponsibleforisoflavonetransportationandaccumulationinsoybeanseeds AT honminglam matetypeproteinsareresponsibleforisoflavonetransportationandaccumulationinsoybeanseeds |
_version_ |
1718432156162719744 |