Cloud-Based Automated Clinical Decision Support System for Detection and Diagnosis of Lung Cancer in Chest CT
Lung cancer is a major cause for cancer-related deaths. The detection of pulmonary cancer in the early stages can highly increase survival rate. Manual delineation of lung nodules by radiologists is a tedious task. We developed a novel computer-aided decision support system for lung nodule detection...
Guardado en:
Autores principales: | Anum Masood, Po Yang, Bin Sheng, Huating Li, Ping Li, Jing Qin, Vitaveska Lanfranchi, Jinman Kim, David Dagan Feng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd08d16d02214fa28f91eb4d39f8fe1f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
por: Edward H. Lee, et al.
Publicado: (2021) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Yu-Xing Tang, et al.
Publicado: (2020) -
PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Shih-Cheng Huang, et al.
Publicado: (2020) -
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
por: Po-Chih Kuo, et al.
Publicado: (2021) -
Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Shih-Cheng Huang, et al.
Publicado: (2020)