3D imaging using scanning diffractometry

Abstract Imaging of cells is a challenging problem as they do not appreciably change the intensity of the illuminating light. Interferometry-based methods to do this task suffer from high sensitivity to environmental vibrations. We introduce scanning diffractometry as a simple non-contact and vibrat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Morteza J. Siavashani, Iman Naghedi, Vahid Abbasian, Ehsan A. Akhlaghi, Mohammad A. Charsooghi, Mohammad Taghi Tavassoly, Ali-Reza Moradi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/fd0b065a8be6445eaa31eb20c4039d96
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fd0b065a8be6445eaa31eb20c4039d96
record_format dspace
spelling oai:doaj.org-article:fd0b065a8be6445eaa31eb20c4039d962021-12-02T14:01:34Z3D imaging using scanning diffractometry10.1038/s41598-020-79939-y2045-2322https://doaj.org/article/fd0b065a8be6445eaa31eb20c4039d962021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79939-yhttps://doaj.org/toc/2045-2322Abstract Imaging of cells is a challenging problem as they do not appreciably change the intensity of the illuminating light. Interferometry-based methods to do this task suffer from high sensitivity to environmental vibrations. We introduce scanning diffractometry as a simple non-contact and vibration-immune methodology for quantitative phase imaging. Fresnel diffractometry by a phase step has led to several applications such as high-precision measurements of displacement. Additional scanning may lead to 3D imaging straightforwardly. We apply the technique to acquire 3D images of holographic grating, red blood cell, neuron, and sperm cell. Either visibility of the diffraction fringes or the positions of extrema may be used for phase change detection. The theoretical analysis through the Fresnel diffraction from one-dimensional phase step is presented and the experimental results are validated with digital holographic microscopy. The presented technique can be suggested to serve as a robust device for 3D phase imaging and biomedical measurements.Morteza J. SiavashaniIman NaghediVahid AbbasianEhsan A. AkhlaghiMohammad A. CharsooghiMohammad Taghi TavassolyAli-Reza MoradiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Morteza J. Siavashani
Iman Naghedi
Vahid Abbasian
Ehsan A. Akhlaghi
Mohammad A. Charsooghi
Mohammad Taghi Tavassoly
Ali-Reza Moradi
3D imaging using scanning diffractometry
description Abstract Imaging of cells is a challenging problem as they do not appreciably change the intensity of the illuminating light. Interferometry-based methods to do this task suffer from high sensitivity to environmental vibrations. We introduce scanning diffractometry as a simple non-contact and vibration-immune methodology for quantitative phase imaging. Fresnel diffractometry by a phase step has led to several applications such as high-precision measurements of displacement. Additional scanning may lead to 3D imaging straightforwardly. We apply the technique to acquire 3D images of holographic grating, red blood cell, neuron, and sperm cell. Either visibility of the diffraction fringes or the positions of extrema may be used for phase change detection. The theoretical analysis through the Fresnel diffraction from one-dimensional phase step is presented and the experimental results are validated with digital holographic microscopy. The presented technique can be suggested to serve as a robust device for 3D phase imaging and biomedical measurements.
format article
author Morteza J. Siavashani
Iman Naghedi
Vahid Abbasian
Ehsan A. Akhlaghi
Mohammad A. Charsooghi
Mohammad Taghi Tavassoly
Ali-Reza Moradi
author_facet Morteza J. Siavashani
Iman Naghedi
Vahid Abbasian
Ehsan A. Akhlaghi
Mohammad A. Charsooghi
Mohammad Taghi Tavassoly
Ali-Reza Moradi
author_sort Morteza J. Siavashani
title 3D imaging using scanning diffractometry
title_short 3D imaging using scanning diffractometry
title_full 3D imaging using scanning diffractometry
title_fullStr 3D imaging using scanning diffractometry
title_full_unstemmed 3D imaging using scanning diffractometry
title_sort 3d imaging using scanning diffractometry
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/fd0b065a8be6445eaa31eb20c4039d96
work_keys_str_mv AT mortezajsiavashani 3dimagingusingscanningdiffractometry
AT imannaghedi 3dimagingusingscanningdiffractometry
AT vahidabbasian 3dimagingusingscanningdiffractometry
AT ehsanaakhlaghi 3dimagingusingscanningdiffractometry
AT mohammadacharsooghi 3dimagingusingscanningdiffractometry
AT mohammadtaghitavassoly 3dimagingusingscanningdiffractometry
AT alirezamoradi 3dimagingusingscanningdiffractometry
_version_ 1718392179494223872