Range-Kernel orthogonality and elementary operators on certain Banach spaces

The characterization of the points in Cp:1≤p<∞(ℋ){C}_{p{:}_{1\le p\lt \infty }}\left({\mathcal{ {\mathcal H} }}), the Von Neuman-Schatten p-classes, that are orthogonal to the range of elementary operators has been done for certain kinds of elementary operators. In this paper, we shall study this...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bachir Ahmed, Segres Abdelkader, Sayyaf Nawal Ali, Ouarghi Khalid
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/fd0ef4ff2a464b4d81079713fe544c61
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The characterization of the points in Cp:1≤p<∞(ℋ){C}_{p{:}_{1\le p\lt \infty }}\left({\mathcal{ {\mathcal H} }}), the Von Neuman-Schatten p-classes, that are orthogonal to the range of elementary operators has been done for certain kinds of elementary operators. In this paper, we shall study this problem of characterization on an abstract reflexive, smooth and strictly convex Banach space for arbitrary operator. As an application, we consider other kinds of elementary operators defined on the spaces Cp:1≤p<∞(ℋ){C}_{p{:}_{1\le p\lt \infty }}\left({\mathcal{ {\mathcal H} }}), and finally, we give a counterexample to Mecheri’s result given in this context.