Range-Kernel orthogonality and elementary operators on certain Banach spaces

The characterization of the points in Cp:1≤p<∞(ℋ){C}_{p{:}_{1\le p\lt \infty }}\left({\mathcal{ {\mathcal H} }}), the Von Neuman-Schatten p-classes, that are orthogonal to the range of elementary operators has been done for certain kinds of elementary operators. In this paper, we shall study this...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bachir Ahmed, Segres Abdelkader, Sayyaf Nawal Ali, Ouarghi Khalid
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/fd0ef4ff2a464b4d81079713fe544c61
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fd0ef4ff2a464b4d81079713fe544c61
record_format dspace
spelling oai:doaj.org-article:fd0ef4ff2a464b4d81079713fe544c612021-12-05T14:10:45ZRange-Kernel orthogonality and elementary operators on certain Banach spaces2391-466110.1515/dema-2021-0024https://doaj.org/article/fd0ef4ff2a464b4d81079713fe544c612021-08-01T00:00:00Zhttps://doi.org/10.1515/dema-2021-0024https://doaj.org/toc/2391-4661The characterization of the points in Cp:1≤p<∞(ℋ){C}_{p{:}_{1\le p\lt \infty }}\left({\mathcal{ {\mathcal H} }}), the Von Neuman-Schatten p-classes, that are orthogonal to the range of elementary operators has been done for certain kinds of elementary operators. In this paper, we shall study this problem of characterization on an abstract reflexive, smooth and strictly convex Banach space for arbitrary operator. As an application, we consider other kinds of elementary operators defined on the spaces Cp:1≤p<∞(ℋ){C}_{p{:}_{1\le p\lt \infty }}\left({\mathcal{ {\mathcal H} }}), and finally, we give a counterexample to Mecheri’s result given in this context.Bachir AhmedSegres AbdelkaderSayyaf Nawal AliOuarghi KhalidDe Gruyterarticlerange-kernel orthogonalityelementary operatorschatten p-classestrace class operators46b2047a3047b2047b4747b10MathematicsQA1-939ENDemonstratio Mathematica, Vol 54, Iss 1, Pp 272-279 (2021)
institution DOAJ
collection DOAJ
language EN
topic range-kernel orthogonality
elementary operator
schatten p-classes
trace class operators
46b20
47a30
47b20
47b47
47b10
Mathematics
QA1-939
spellingShingle range-kernel orthogonality
elementary operator
schatten p-classes
trace class operators
46b20
47a30
47b20
47b47
47b10
Mathematics
QA1-939
Bachir Ahmed
Segres Abdelkader
Sayyaf Nawal Ali
Ouarghi Khalid
Range-Kernel orthogonality and elementary operators on certain Banach spaces
description The characterization of the points in Cp:1≤p<∞(ℋ){C}_{p{:}_{1\le p\lt \infty }}\left({\mathcal{ {\mathcal H} }}), the Von Neuman-Schatten p-classes, that are orthogonal to the range of elementary operators has been done for certain kinds of elementary operators. In this paper, we shall study this problem of characterization on an abstract reflexive, smooth and strictly convex Banach space for arbitrary operator. As an application, we consider other kinds of elementary operators defined on the spaces Cp:1≤p<∞(ℋ){C}_{p{:}_{1\le p\lt \infty }}\left({\mathcal{ {\mathcal H} }}), and finally, we give a counterexample to Mecheri’s result given in this context.
format article
author Bachir Ahmed
Segres Abdelkader
Sayyaf Nawal Ali
Ouarghi Khalid
author_facet Bachir Ahmed
Segres Abdelkader
Sayyaf Nawal Ali
Ouarghi Khalid
author_sort Bachir Ahmed
title Range-Kernel orthogonality and elementary operators on certain Banach spaces
title_short Range-Kernel orthogonality and elementary operators on certain Banach spaces
title_full Range-Kernel orthogonality and elementary operators on certain Banach spaces
title_fullStr Range-Kernel orthogonality and elementary operators on certain Banach spaces
title_full_unstemmed Range-Kernel orthogonality and elementary operators on certain Banach spaces
title_sort range-kernel orthogonality and elementary operators on certain banach spaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/fd0ef4ff2a464b4d81079713fe544c61
work_keys_str_mv AT bachirahmed rangekernelorthogonalityandelementaryoperatorsoncertainbanachspaces
AT segresabdelkader rangekernelorthogonalityandelementaryoperatorsoncertainbanachspaces
AT sayyafnawalali rangekernelorthogonalityandelementaryoperatorsoncertainbanachspaces
AT ouarghikhalid rangekernelorthogonalityandelementaryoperatorsoncertainbanachspaces
_version_ 1718371757548634112