Range-Kernel orthogonality and elementary operators on certain Banach spaces
The characterization of the points in Cp:1≤p<∞(ℋ){C}_{p{:}_{1\le p\lt \infty }}\left({\mathcal{ {\mathcal H} }}), the Von Neuman-Schatten p-classes, that are orthogonal to the range of elementary operators has been done for certain kinds of elementary operators. In this paper, we shall study this...
Enregistré dans:
Auteurs principaux: | Bachir Ahmed, Segres Abdelkader, Sayyaf Nawal Ali, Ouarghi Khalid |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fd0ef4ff2a464b4d81079713fe544c61 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Range-kernel weak orthogonality of some elementary operators
par: Bachir Ahmed, et autres
Publié: (2021) -
Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
par: Mesbah Nadia, et autres
Publié: (2021) -
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
par: Messaoudene Hadia, et autres
Publié: (2021) -
On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
par: Duggal B.P.
Publié: (2021) -
On stability of steady nonlinear rotating viscoelastic jets
par: Daniel N. Riahi
Publié: (2020)