Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques
Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without...
Guardado en:
Autores principales: | Colin Griesbach, Andreas Groll, Elisabeth Bergherr |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd186089ca9d408f93050b1c5d914618 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques.
por: Colin Griesbach, et al.
Publicado: (2021) -
A Novel Context Aware Joint Segmentation and Classification Framework for Glaucoma Detection
por: S. Sankar Ganesh, et al.
Publicado: (2021) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Ellery Wulczyn, et al.
Publicado: (2021) -
Improved Outside-In Suture through the Joint Capsule to Repair the Palmer I-B Triangular Fibrocartilage Complex Superficial Injury
por: Tonglong Xu, et al.
Publicado: (2021) -
Individual-patient prediction of meningioma malignancy and survival using the Surveillance, Epidemiology, and End Results database
por: Jeremy T. Moreau, et al.
Publicado: (2020)