Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis
Abstract Deep learning (DL) has the potential to transform medical diagnostics. However, the diagnostic accuracy of DL is uncertain. Our aim was to evaluate the diagnostic accuracy of DL algorithms to identify pathology in medical imaging. Searches were conducted in Medline and EMBASE up to January...
Guardado en:
Autores principales: | Ravi Aggarwal, Viknesh Sounderajah, Guy Martin, Daniel S. W. Ting, Alan Karthikesalingam, Dominic King, Hutan Ashrafian, Ara Darzi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd25beaf97d74f9280c25347f7b195a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Clinical outcomes of digital sensor alerting systems in remote monitoring: a systematic review and meta-analysis
por: Fahad M. Iqbal, et al.
Publicado: (2021) -
Challenges for the evaluation of digital health solutions—A call for innovative evidence generation approaches
por: Chaohui Guo, et al.
Publicado: (2020) -
Assessing the accuracy of automatic speech recognition for psychotherapy
por: Adam S. Miner, et al.
Publicado: (2020) -
Medical Image Diagnostic Value of Computed Tomography for Bladder Tumors
por: Lin Li, et al.
Publicado: (2021) -
Influence of MRI on Diagnostic Efficacy and Satisfaction of Patients with Alzheimer’s Disease
por: Zheng Dong, et al.
Publicado: (2021)