Machine Learning Techniques Applied to Predict Tropospheric Ozone in a Semi-Arid Climate Region
In the last decade, ground-level ozone exposure has led to a significant increase in environmental and health risks. Thus, it is essential to measure and monitor atmospheric ozone concentration levels. Specifically, recent improvements in machine learning (ML) processes, based on statistical modelin...
Guardado en:
Autores principales: | Md Al Masum Bhuiyan, Ramanjit K. Sahi, Md Romyull Islam, Suhail Mahmud |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd262ba9731e4450b9b24adbc10c6d08 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
TEMPERATURE AS THUMB RULE PREDICTOR OF OZONE LEVELS IN SANTIAGO DE CHILE GROUND AIR
por: RUBIO,MARÍA A, et al.
Publicado: (2014) -
Impacts of Human Activities on Ecosystem Service Value in Arid and Semi-Arid Ecological Regions of China
por: Xin Fan, et al.
Publicado: (2021) -
Integrating Sediment (dis)Connectivity into a Sediment Yield Model for Semi-Arid Catchments
por: Louise Lodenkemper, et al.
Publicado: (2021) -
Nebkhas play important roles in desertification control and biodiversity protection in arid and semi-arid regions of China
por: Weicheng Luo, et al.
Publicado: (2020) -
Scrotal Circumference and Testicular Morphometric Characteristics of the Camel (Camelus Dromedarius) in the Semi-Arid Environment of Northern Nigeria
por: Ali Abdullahi,Ibrahim, et al.
Publicado: (2012)