A Sparse Quasi-Newton Method Based on Automatic Differentiation for Solving Unconstrained Optimization Problems
In our paper, we introduce a sparse and symmetric matrix completion quasi-Newton model using automatic differentiation, for solving unconstrained optimization problems where the sparse structure of the Hessian is available. The proposed method is a kind of matrix completion quasi-Newton method and h...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd2e320392a24448bd2496d54df4470e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In our paper, we introduce a sparse and symmetric matrix completion quasi-Newton model using automatic differentiation, for solving unconstrained optimization problems where the sparse structure of the Hessian is available. The proposed method is a kind of matrix completion quasi-Newton method and has some nice properties. Moreover, the presented method keeps the sparsity of the Hessian exactly and satisfies the quasi-Newton equation approximately. Under the usual assumptions, local and superlinear convergence are established. We tested the performance of the method, showing that the new method is effective and superior to matrix completion quasi-Newton updating with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and the limited-memory BFGS method. |
---|