A Sparse Quasi-Newton Method Based on Automatic Differentiation for Solving Unconstrained Optimization Problems
In our paper, we introduce a sparse and symmetric matrix completion quasi-Newton model using automatic differentiation, for solving unconstrained optimization problems where the sparse structure of the Hessian is available. The proposed method is a kind of matrix completion quasi-Newton method and h...
Guardado en:
Autores principales: | Huiping Cao, Xiaomin An |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd2e320392a24448bd2496d54df4470e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Improved Convergence and Complexity Analysis for the Interpolatory Newton Method
por: Argyros,Ioannis K
Publicado: (2010) -
On the Gauss-Newton method for solving equations
por: Argyros,Ioaniss K, et al.
Publicado: (2012) -
Global convergence of new three terms conjugate gradient for unconstrained optimization
por: Ahmed Anwer Mustafa, et al.
Publicado: (2021) -
λ-quasi Cauchy sequence of fuzzy numbers
por: Baruah,Achyutananda, et al.
Publicado: (2021) -
CONVERGENCE OF NEWTON'S METHOD UNDER THE GAMMA CONDITION
por: ARGYROS,IOANNIS K
Publicado: (2006)